bR BATFRREEIRG T A T B E TG

BORREIR A BUETRAIGER

New Value Prediction Architecture By Combining Static and Dynamic
Method

E=ULES
Shu-Lin Hwang

RS

BETFHRES SR AR EEEREIR - HARH TS SHITRAVERE(E - (ERETENRIER - Bk
AR HCHE < mAEAE [EI AR BT T I FHBUE T 2RERS - FE[41 (51 TP fEE TRt — R E & = RS (&
®REE - P RARAERNE) B GTUNES 1] P A T SRS AR - (B2)yF —LEE
FERVEDRHIE A B S A PR TN - & TR EFUR S EETENRIRS] - RERVEETE
500 S (58 PR A A A BT ME R A, » AR AT S S AP FAR SR T 4S8 By R R M AR
STRUETHIRAVERIRCR - BRID - MRS TSR T RO B SR R B R ICE T /AR Y
RETHITAAE T - EERE BT Ay T AR R R AG A HARE (41 (512 HHHRE S TR
SIZERERE 22 2R H TEUAISRE -

R - HEERHEMR - BUERH - Bi3dTaes

ABSTRACT

Value prediction attempts to eliminate true data dependencies by predicting the outcome values of
instructions at run-time. Using the predicted outcome, the dependent instructions can be executed in the same
cycle rather than stalled. In [4][5], they propose a hybrid mechanism with three predictors (last value, stride, and
finite context based predictor) to get high prediction rate for all instructions. But there are still a lot of more
complex data sequences that are hard to classify, so we can not make any prediction on them. In order to carry
out mechanism of the hybrid value prediction, huge value prediction table usually was used to keep information
about the prediction characteristics. In this paper, we explore the utilization of prediction table by program
profiling technique and program’s characteristic. Additionally, we combine static and dynamic allocating
methods in our new hybrid predictor based on the program profiling technique. Simulation results show the
proposed method can reduce the hardware cost and achieve higher performance compared with the hybrid
predictor proposed in [4] [5].

Keyword: True data dependency, Value Prediction, Program Profiling

1. Introduction be extracted from programs. In order to achieve

higher ILP, speculation execution technique has been

Control flow dependence and data flow adopted. There is an uprising demand for speculative
dependence are the two fundamental restrictions that ~ execution, as the superscalar architectures have
limit the instruction level parallelism (ILP) that can ~ become increasingly popular in the current processor
designs. Now people use various methods to remove

wER ISR SR e AR A AR 2RI
1 PG 5 35 BEE Y

ar

bR AR TT A M B E TS

the constraints of sequential instruction execution and
exploit instruction parallelism.

Control dependences occur due to conditional
branch instructions that can cause a potential change
in control flow based on the outcome of the branch.
In order to eliminate the control dependences, branch
prediction and control speculative execution are used.
Value prediction is a technique used to break the true
data dependence by predicting the outcome of data
value. That is, when an instruction is fetched, its
result can be predicted so that the subsequence
instructions that depend on the result of the
instruction can be executed in parallel with the
instruction rather than stalled. Many predictors have
been proposed, for example, last value prediction [1],
stride prediction [2], context predictors [3], and
hybrid predicting approaches [4]. Though these
methods can achieve high ILP, their hardware cost is
high. In [4][5], they suggest us to use a hybrid
mechanism with three predictors (last value, stride,
and context based predictor) to get high prediction
rate for all instructions. In this paper, we propose a
new technique combining hardware method and
profiling technique to improve value prediction
performance and the utilization of prediction table.

2. Related Work
2.1. Value Predictor

Value Predictor is necessary for making correct
value prediction. There are many kinds of value
predictor. In the following paragraph, those predictors
will be introduced. We should use different value
predictors to make prediction based on the behavior
of instructions.

By observing the data sequences generated from
the instruction, some interesting patterns give us
some ideas to predict data values. Some instructions
always make the same value, for example: 3, 3, 3, 3,
3, ---. Some experiment results have shown that such
sequence occurs very often. Some instructions make

BAE S 535 BH I

regular values, we call those values: stride data
sequence --- the next data value is always a stride
difference with the previous data value. For example:
2, 4, 6, 8 10, ---, but some data sequences are
complex, for example: 3, 3, 3, 4,5, 3, 3, 3, 4, 5, 3,
3, ---, it needs to use context predictor to make
prediction for those complex data sequences. There
are still a lot of more complex data sequences that are
hard to classify, so we think those data sequences are
When those

encountered, no prediction is made.

unpredictable. instructions are

2.1.1 Last Value Predictor

Last Value Predictor is the simplest and typical
predictor. When we encounter data sequences that are
constants, then last value predictor should be used to
make prediction [4]. Last value predictor simply
predicts the last value as its target value. The main
part of the predictor is a Value History Table (VHT)
that stores the last result produced by the previous
instructions that are currently mapped to the entry.
The VHT of last value predictor has two fields --- Tag,
Value. Tag field stores the identity of the instruction
that is currently mapped to that entry, and the Value
field stores the last result for that instruction.

2.1.2 Stride Predictor

Stride value predictor is used to capture the
characteristic of stride data sequences. Customarily,
we call the difference of the two most recent values
as stride [4,7]. For example, if the stride data
sequences are 2, 4, 6, 8, ---, then the stride of such
sequences is 2. Stride value predictor adds the stride
to the most recent value to produce the next value.

Counter field stores a value, and we can
determine whether a prediction should be made by
the value. This value will be adjusted based on the
historical performance of last value predictor. For
example, the counter field increases by 1, when
predictor makes correct prediction; the counter field
decreases by 1, when predictor makes incorrect

prediction. When the counter is below certain
threshold, we don’t make prediction. Initially the
counter was set to 1; the threshold was set to 2. So we
don’t make any prediction when instructions are

encountered for the first time.

2.1.3FCM

There are still a lot of instructions that produce
complex data sequences. For example, a, a, a, b, ¢, a,
a,a, b, c, a,.... Those data sequence can be predicted
by their history. Context based predictor is designed
for such data sequences. By the instruction's history,
Context based predictors predicts the next value
[4,6].

Finite Context Method Predictor (fcm) is the
typical context based predictor [4]. " fcm predictors
rely on mechanisms that predict next value based on
a finite number of preceding values. An order k fcm
predictor uses k proceeding history values." fcm
predictors use counters to count the number of
repetitions of values that occurs immediately
following a certain context pattern. Hence for each
context pattern there must be as many counters as the
values following the context. The value with the

maximum counter is the predicted next value.

e due
LT EXistoxy-

Ta Tandlin Drada A dhmes

bR BATFRREEIRG T A T B E TG

Another Scheme to capture the recurrence of a
behavior pattern among instruction results is to use an
elaborate two-level prediction scheme [5]. This
method incorporates with the level prediction and
correlated base mechanism, and has shown that such
a method can carry out highly accurate branch
prediction.

However, incorporating the 2-level prediction
concept is not as

straightforward as

into data value prediction
incorporating it into branch
prediction. The primary difficulty is that the result of
an instruction can take any one of 2" value, for
reasonable values of W such as 32 or 64. There are
s0 numerous possibilities in value prediction not just
two target values for the branch prediction.

Nevertheless, because of program characteristic
and value locality, the value outcome of the
instruction cannot be such random. Experiment has
showed that most parts of instructions generate less
than 4 values. Figure 1 is an example of the two level
predictors. The prediction unit contains two parts:
VHT (value history table) and PHT (pattern history
table). The value history table has four fields: Tag,

LRU Info, Data Values, and Value History Pattern.

Talele

/

CI0LCH o O S CE 000, . 0

LR R

LT

Adl
&

Figure 1. Two level predictor

HHEE 55 35 BH I

ar

bR AR TT A M B E TS

The Data Values field stores up to 4 most recent
unique values. The 4 values binary encoding by {00,
01, 10, 11}. By selecting one of the 4 outcomes from
{00, 01, 10, 11}, and taking the value which currently
associated with that outcome to be predicted value.
The LRU Info field records the order in which the 4
data values were last seen. When a fifth unique value
is produced, it replaces the Data Values field the least
recently seen value out. Value History Pattern fields
stores the pattern of values which produced by
instruction, and Value History Pattern is the index to
Pattern History Table (PHT) which is second level of
the predictor. Each entry of the pattern history table
holds four count values {C0, C1, C2, C3} that
associate to the four data values in value history table
and are 4 bit-size.

2.2. Hybrid Predictor

Last value predictor simply predicts the last
previous value as its target value. Stride value
predictor is used to capture the characteristic of stride
data sequences. Still a lot of instructions that produce
data sequences that can't be predicted by the
predictors described above. However, such data
sequences could be predicted by their history.
Context based predictors predicts the next value by
the instruction's previous history. It predicts one of
the history values when the same context repeats.

But no single prediction scheme can make high
prediction rate for all types of instructions. Even in
the same program, different instruction blocks have
different value localities and different characteristics.
Each predictor is just suitable for some instructions.
It suggests us to use hybrid predictor to get high
prediction rate for all instructions [5]. There are some
defects in hybrid predictor. For example, if we use a
hybrid predictor with three predictors (last value
predictor, stride predictor, and context based
predictor) then we must keep the prediction
information in the three predictors for each

instruction. That is, for each instruction, we must use

BAE S 535 BH I

three times of prediction table in hybrid predictor
than in single predictor. But we only use one
predictor's result by some mechanism (for example,
using confidence counter). Besides, experiments have
shown that the predictability of instructions is not
uniformly among the program. Some instructions are
highly

predictable, and some are highly

unpredictable.
2.3. Program Profiling

We can use hybrid predictor to cover all different
instruction characteristics. However, by such pure
hardware methods, the hardware cost is too high to be
accepted, and the efficiency is low. Due to conflict
miss problem, the unpredictable instructions could
uselessly occupy the prediction table and evacuated
the predictable instructions. As a result, the utilization
of prediction table is low.

Feddy Drabby [8] proposed a compiler-aided
scheme to help value prediction by program profiling.
It uses program-profiling method to collect
information about the predictability of instructions in
a program. The compiler that acts as a mediator
passes this profiling information to the value
prediction hardware mechanism. The collected
information is used by the hardware in order to
reduce misprediction and to achieve better utilization
of prediction table. In general, the idea of profiling
techniques is to study the behavior of the program
based on its previous run. In each run, the program
can be executed based on different sets of input
parameters and input files. Experiments [5] have
shown that different input files do not dramatically
affect the prediction accuracy of several examined
benchmarks. And the correlation between the
predictability of instructions under different runs of a
program with different input files and programs is

high.
3. Our modified method and new architecture

Our method is a modification of the profiling

technique which uses the collected information to
determinate the allocation of our new hybrid
predictor. It consists of two phases: profiling phase
and run-time phase. The profiling phase is divided
into three steps. In the first step, the program is
compiled as usual and the code is generated. In the
second step, the profile image of the program is
collected.

The profile image describes the prediction
tendency of each instruction. In order to get this
information, the programs is run on the Shade
simulator that is designed to emulate the operation of
the value predictor and can measure the profiling
image for each instruction. Such profiling image

Step 1

Train input
parameters / files

bR BATFRREEIRG T A T B E TG

includes execution count, the prediction rate of the
instruction and the suitable predictor for the
instruction.

The output of the profile image is organized as a
table. Each entry is associated with one instruction
and consists of four fields: the instruction address, the
executing count, the prediction accuracy and suitable
predictor. Note that the table has been sorted by the
executing count and the instructions with the lower
prediction accuracy (e.g. <0.7) are filtered out. In the
final step, the compiler generates the function codes
that can initialize the allocation of our new hybrid
predictor with the output table. Figure 2 shows the
profiling phase process.

Step 2 Step 3

New binary
executable with the
initialize function

?

. Binary o)
Compiler T Executable Simulator Compiler
4 Y
h 4
Benchmark Profile
Programs Image

Figure 2. The process of the profiling phase

last-value predictor,

stride predictor and FCM

The run time phase is divided into two steps. The
first step makes initial allocation by using the
profiling output. We only do the static allocation for
the last-value predictor and stride predictor. Because
the FCM predictor needs to learn repeating sequences
to predict arbitrary repeating patterns. So, it is
unnecessary to allocate the FCM predictor statically.
The next step makes the dynamic value prediction at
run time.

Our new hybrid predictor includes three parts:

predictor. In order to design the architecture of our
new predictor, we make the experiment of the hybrid

predictor with infinite size in each predictor.

The hybrid predictor of the experiment is
composed of one FCM predictor and one stride
predictor. The stride predictor is based on the
two-delta predictor. The two predictors make
predictions simultaneously for each instruction. If
one of the two predictions is correct, the correct

HHEE 55 35 BH I

ar

bR AR TT A M B E TS

prediction count will be increased by one. The
experiment results are shown in Fig. 3.

Hybride Predictor with Infinte Size
100%
90% B No
80% Prediction
0% O Incorrect
60%
50%
[m]
40% EC.M
30% . nique
20% Strllde
10% Unique
0% ‘ s O Both
= & = = o Correct
8 =<
&
£
o
@]

Figure 3.The Prediction Rate of Hybrid Predictor
with Infinite Size

From the simulation results, we know the Both
Correct has the highest rate of 53.7%, the prediction
rate of the Stride Unique and FCM Unique are 20.2%
and 6% respectively. Because the last-value predictor
is of the low cost and the FCM predictor is too
expensive. So, we prefer to use the last-value
predictor or stride predictor as the major component.

In order to achieve high performance, different types
of the correct prediction must be allocated in the
suitable predictor.

We use the profile image output to help the
allocation of the last-value predictor and stride
predictor. Firstly, the last-value predictor will be
allocated for the instructions with high prediction
accuracy. We use the static allocation method for the
last-value predictor. This means it could not be
replaced any time. Then the stride predictor is
allocated initially for the rest instructions. But the
stride predictor uses dynamic allocation and can be
replaced at run time.

The last-value predictor in our architecture is
simple and very accurate as shown in Figure 4. If it is
hit, the other predictors don’t need to make prediction.
Thus the three predictors are unnecessary to make
predictions simultaneously for each instruction. If it
is missed, the prediction is chosen from the other
predictors (stride and FCM predictors) the same as
the operation of general hybrid predictor.

PC PC PC
i aé Indcg a dex a de
Tag 5 Value Tag :Value &fCountt r Tag E VPH Ecounter

: : Stride : : : .

e ! Stride ! L FCM! VT

: ; ; | VPTi

L VT il | A

i [Enablg Enable

E —

l No v
s D ,é\/ —’@
- . ‘ '
Decls_lon Mux
L Logic

Predicted Value

Figure 4. The Architecture of New Value Predictor

WGE R 535 BB

4. Numerical Results

We use the SPECint95 as the benchmarks for the
run on Sun
Ultra-sparc processor 0.S. The
simulation tools we use are Shade and SpixTools

simulations were
with Solaris

simulation. All

released by SUN. The simulation results of the
general hybrid predictor and our new predictor with
various entries (from 1024 to 4096) are shown in
Figure 5 and Table 1, respectively. The general
hybrid predictor includes one stride predictor and one
FCM predictor with the same entries. But in our new
predictor the last-value predictor and the FCM
predictor are of fixed size (512 entries and 256
entries) for all simulated architectures. Only the size
of the stride predictor can be changed in our new
predictor. We use Table 1 to compare the cost and the

bR BATFRREEIRG T A T B E TG

entries and the New_n represents our new predictor
with n entries stride predictor. As we discussed in the
previous paragraph, the performance of the new
predictor is better than the general hybrid predictor
and the hardware cost is reduced obviously.

Correct Prediction Rate

O hybrid1024

| @ hybrid2048
|3 hybrid4096

|0 new1024

| new2048

perl
vortex

m88ksim

Compress95

0 new4096

Figure 5. Correct Prediction Rate of Our New Hybrid

prediction rate for the different architectures. The Predictor
H_n represents the general hybrid predictor with n
Type H_1024 | New 1024 | H_2048 | New 2048 | H_4096 | New_ 4096
Cost (Bits) 194K 140.75K 384K 225.75K 760K 393.75K
Correct Rate 0.6918 0.7127 0.7160 0.7264 0.7336 0.7356
Incorrect Rate | 0.0637 0.0457 0.0642 0.0472 0.0641 0.0449
No Prediction | 0,2445 0.2416 0.2198 0.2264 0.2023 0.2195
Prediction
Accuracy 0.9094 0.9397 0.9122 0.9390 0.9146 0.9425

Table 1. The Comparison between Hybrid and Our New Predictors

5. Conclusions

From the simulations shown above, the
512-entry last-value predictor has a very high
prediction rate (>95%) for all the case. This will be a
good choice for the high confidence prediction at run
time. In this paper, we have proposed a new hybrid
predictor using an appropriate predictor for each

instruction.

References

[1] Lee, JK.F., and A.J. Smith, “Branch Prediction
Strategies and Branch Target Buffer Design”, In
Proceeding of 8th Annual
Symposium on Computer Architecture,
1981, pp. 135-148.

International
May

[2] M. H. Lipasti and J. P. Shen, “Exceeding the data
flow limit via value prediction,” in Proceedings
of the 29" Annual ACM/IEEE International
Symposium and WorkShop on Microarchitecture,

PG 5 35 BEE Y

ar

bR AR TT A M B E TS

(3]

(4]

pp.226-237, Dec. 1996.

Feddy Gabbay, Avi Mendelson, “ Speculative
execution based on value prediction. EE
Department TR 1080, Technion — Israel Institute
of Technology, Nov. 1996.

Yiannakis Sazeides, James E. Smith, “The
Predictability of Data Values,” in Proceedings of
the 30th Annual IEEE/ACM International
Symposium on Microarchitecture, pp.
248 —258,1997.

[5] Kai Wang and Manoj Franklin, ”"Highly Accurate

[6]

[7]

(8]

Data Value Prediction using Hybrid Predictors,”
in Proceedings of the fourth International
Conference on High Performance Computing,
pp. 358 —363,1997.

Yiannakis Sazeides and James E. Smith,
“Modeling Program Predictability,” in
Proceedings of the 25th Annual International
Symposium on Computer Architecture,
pp.73 —84,1998.

Brad Calder, Glenn Reinman and Brad Calder,
“Selective Value Prediction,” in Proceedings of
the 26th annual international symposium on
Computer architecture, pp.64 — 74,1999.

Feddy Gabbay and Avi Mendelson, “ Can
Program Profiling Support Value Prediction?”,
in Proceedings of the Thirtieth Annual
IEEE/ACM International ~ Symposium on
Microarchitecture, pp.270 —280, 1997

BAE S 535 BH I

