
黃樹林 整合靜態與動態方法之新數值預測結構

明志學報 第 35 卷第二期 1

整合靜態與動態方法之新數值預測結構

New Value Prediction Architecture By Combining Static and Dynamic

Method

黃樹林

Shu-Lin Hwang

摘要

數值預測機制嘗試去消除真實資料相依，其藉由預測指令執行後的結果數值。使用這預測的結果，隨後

的相依指令可在相同的週期被執行而不用被停下來等待。在[4][5]中的作者提出一種包含三種預測器(最

後數值、步距及有限內容預測器)的混合式預測器可以對所有指令得到較高的預測率。但是仍有一些更複

雜的資料順序無法被分類而無法對他們做任何預測。為了能實現混合式數值預測的機制，大量的數值預

測表通常被使用來儲存相關預測特性的資訊。在本篇論文中我們使用程式執行紀錄技術及程式特性來探

討數值預測表的使用效率。除外，我們基於程式執行紀錄的分析技術整合靜態與動態的配置方法於新的

混合式的預測架構中。實驗結果顯示新提出的方法能降低硬體成本並且相較於[4][5]中提出的混合式預

測架構能達到較高的預測效能。

關鍵詞：真實資料相依、數值預測、程式執行紀錄

ABSTRACT

Value prediction attempts to eliminate true data dependencies by predicting the outcome values of

instructions at run-time. Using the predicted outcome, the dependent instructions can be executed in the same

cycle rather than stalled. In [4][5], they propose a hybrid mechanism with three predictors (last value, stride, and

finite context based predictor) to get high prediction rate for all instructions. But there are still a lot of more

complex data sequences that are hard to classify, so we can not make any prediction on them. In order to carry

out mechanism of the hybrid value prediction, huge value prediction table usually was used to keep information

about the prediction characteristics. In this paper, we explore the utilization of prediction table by program

profiling technique and program’s characteristic. Additionally, we combine static and dynamic allocating

methods in our new hybrid predictor based on the program profiling technique. Simulation results show the

proposed method can reduce the hardware cost and achieve higher performance compared with the hybrid

predictor proposed in [4] [5].

Keyword: True data dependency, Value Prediction, Program Profiling

1. Introduction

Control flow dependence and data flow

dependence are the two fundamental restrictions that

limit the instruction level parallelism (ILP) that can

be extracted from programs. In order to achieve

higher ILP, speculation execution technique has been

adopted. There is an uprising demand for speculative

execution, as the superscalar architectures have

become increasingly popular in the current processor

designs. Now people use various methods to remove

黃樹林 明志技術學院電機工程系副教授

黃樹林 整合靜態與動態方法之新數值預測結構

明志學報 第 35 卷第二期 2

the constraints of sequential instruction execution and

exploit instruction parallelism.

Control dependences occur due to conditional

branch instructions that can cause a potential change

in control flow based on the outcome of the branch.

In order to eliminate the control dependences, branch

prediction and control speculative execution are used.

Value prediction is a technique used to break the true

data dependence by predicting the outcome of data

value. That is, when an instruction is fetched, its

result can be predicted so that the subsequence

instructions that depend on the result of the

instruction can be executed in parallel with the

instruction rather than stalled. Many predictors have

been proposed, for example, last value prediction [1],

stride prediction [2], context predictors [3], and

hybrid predicting approaches [4]. Though these

methods can achieve high ILP, their hardware cost is

high. In [4][5], they suggest us to use a hybrid

mechanism with three predictors (last value, stride,

and context based predictor) to get high prediction

rate for all instructions. In this paper, we propose a

new technique combining hardware method and

profiling technique to improve value prediction

performance and the utilization of prediction table.

2. Related Work

2.1. Value Predictor

Value Predictor is necessary for making correct

value prediction. There are many kinds of value

predictor. In the following paragraph, those predictors

will be introduced. We should use different value

predictors to make prediction based on the behavior

of instructions.

By observing the data sequences generated from

the instruction, some interesting patterns give us

some ideas to predict data values. Some instructions

always make the same value, for example: 3, 3, 3, 3,

3, …. Some experiment results have shown that such

sequence occurs very often. Some instructions make

regular values, we call those values: stride data

sequence --- the next data value is always a stride

difference with the previous data value. For example:

2, 4, 6, 8, 10, …, but some data sequences are

complex, for example: 3, 3, 3, 4, 5, 3, 3, 3, 4, 5, 3,

3, … , it needs to use context predictor to make

prediction for those complex data sequences. There

are still a lot of more complex data sequences that are

hard to classify, so we think those data sequences are

unpredictable. When those instructions are

encountered, no prediction is made.

2.1.1 Last Value Predictor

Last Value Predictor is the simplest and typical

predictor. When we encounter data sequences that are

constants, then last value predictor should be used to

make prediction [4]. Last value predictor simply

predicts the last value as its target value. The main

part of the predictor is a Value History Table (VHT)

that stores the last result produced by the previous

instructions that are currently mapped to the entry.

The VHT of last value predictor has two fields --- Tag,

Value. Tag field stores the identity of the instruction

that is currently mapped to that entry, and the Value

field stores the last result for that instruction.

2.1.2 Stride Predictor

Stride value predictor is used to capture the

characteristic of stride data sequences. Customarily,

we call the difference of the two most recent values

as stride [4,7]. For example, if the stride data

sequences are 2, 4, 6, 8, …, then the stride of such

sequences is 2. Stride value predictor adds the stride

to the most recent value to produce the next value.

Counter field stores a value, and we can

determine whether a prediction should be made by

the value. This value will be adjusted based on the

historical performance of last value predictor. For

example, the counter field increases by 1, when

predictor makes correct prediction; the counter field

decreases by 1, when predictor makes incorrect

黃樹林 整合靜態與動態方法之新數值預測結構

明志學報 第 35 卷第二期 3

prediction. When the counter is below certain

threshold, we don’t make prediction. Initially the

counter was set to 1; the threshold was set to 2. So we

don’t make any prediction when instructions are

encountered for the first time.

2.1.3 FCM

There are still a lot of instructions that produce

complex data sequences. For example, a, a, a, b, c, a,

a, a, b, c, a, … . Those data sequence can be predicted

by their history. Context based predictor is designed

for such data sequences. By the instruction's history,

Context based predictors predicts the next value

[4,6].

Finite Context Method Predictor (fcm) is the

typical context based predictor [4]. " fcm predictors

rely on mechanisms that predict next value based on

a finite number of preceding values. An order k fcm

predictor uses k proceeding history values." fcm

predictors use counters to count the number of

repetitions of values that occurs immediately

following a certain context pattern. Hence for each

context pattern there must be as many counters as the

values following the context. The value with the

maximum counter is the predicted next value.

Another Scheme to capture the recurrence of a

behavior pattern among instruction results is to use an

elaborate two-level prediction scheme [5]. This

method incorporates with the level prediction and

correlated base mechanism, and has shown that such

a method can carry out highly accurate branch

prediction.

However, incorporating the 2-level prediction

concept into data value prediction is not as

straightforward as incorporating it into branch

prediction. The primary difficulty is that the result of

an instruction can take any one of 2W value, for

reasonable values of W such as 32 or 64. There are

so numerous possibilities in value prediction not just

two target values for the branch prediction.

Nevertheless, because of program characteristic

and value locality, the value outcome of the

instruction cannot be such random. Experiment has

showed that most parts of instructions generate less

than 4 values. Figure 1 is an example of the two level

predictors. The prediction unit contains two parts:

VHT (value history table) and PHT (pattern history

table). The value history table has four fields: Tag,

LRU Info, Data Values, and Value History Pattern.

Figure 1. Two level predictor

黃樹林 整合靜態與動態方法之新數值預測結構

明志學報 第 35 卷第二期 4

The Data Values field stores up to 4 most recent

unique values. The 4 values binary encoding by {00,

01, 10, 11}. By selecting one of the 4 outcomes from

{00, 01, 10, 11}, and taking the value which currently

associated with that outcome to be predicted value.

The LRU Info field records the order in which the 4

data values were last seen. When a fifth unique value

is produced, it replaces the Data Values field the least

recently seen value out. Value History Pattern fields

stores the pattern of values which produced by

instruction, and Value History Pattern is the index to

Pattern History Table (PHT) which is second level of

the predictor. Each entry of the pattern history table

holds four count values {C0, C1, C2, C3} that

associate to the four data values in value history table

and are 4 bit-size.

2.2. Hybrid Predictor

Last value predictor simply predicts the last

previous value as its target value. Stride value

predictor is used to capture the characteristic of stride

data sequences. Still a lot of instructions that produce

data sequences that can't be predicted by the

predictors described above. However, such data

sequences could be predicted by their history.

Context based predictors predicts the next value by

the instruction's previous history. It predicts one of

the history values when the same context repeats.

But no single prediction scheme can make high

prediction rate for all types of instructions. Even in

the same program, different instruction blocks have

different value localities and different characteristics.

Each predictor is just suitable for some instructions.

It suggests us to use hybrid predictor to get high

prediction rate for all instructions [5]. There are some

defects in hybrid predictor. For example, if we use a

hybrid predictor with three predictors (last value

predictor, stride predictor, and context based

predictor) then we must keep the prediction

information in the three predictors for each

instruction. That is, for each instruction, we must use

three times of prediction table in hybrid predictor

than in single predictor. But we only use one

predictor's result by some mechanism (for example,

using confidence counter). Besides, experiments have

shown that the predictability of instructions is not

uniformly among the program. Some instructions are

highly predictable, and some are highly

unpredictable.

2.3. Program Profiling

We can use hybrid predictor to cover all different

instruction characteristics. However, by such pure

hardware methods, the hardware cost is too high to be

accepted, and the efficiency is low. Due to conflict

miss problem, the unpredictable instructions could

uselessly occupy the prediction table and evacuated

the predictable instructions. As a result, the utilization

of prediction table is low.

Feddy Drabby [8] proposed a compiler-aided

scheme to help value prediction by program profiling.

It uses program-profiling method to collect

information about the predictability of instructions in

a program. The compiler that acts as a mediator

passes this profiling information to the value

prediction hardware mechanism. The collected

information is used by the hardware in order to

reduce misprediction and to achieve better utilization

of prediction table. In general, the idea of profiling

techniques is to study the behavior of the program

based on its previous run. In each run, the program

can be executed based on different sets of input

parameters and input files. Experiments [5] have

shown that different input files do not dramatically

affect the prediction accuracy of several examined

benchmarks. And the correlation between the

predictability of instructions under different runs of a

program with different input files and programs is

high.

3. Our modified method and new architecture

Our method is a modification of the profiling

黃樹林 整合靜態與動態方法之新數值預測結構

明志學報 第 35 卷第二期 5

technique which uses the collected information to

determinate the allocation of our new hybrid

predictor. It consists of two phases: profiling phase

and run-time phase. The profiling phase is divided

into three steps. In the first step, the program is

compiled as usual and the code is generated. In the

second step, the profile image of the program is

collected.

The profile image describes the prediction

tendency of each instruction. In order to get this

information, the programs is run on the Shade

simulator that is designed to emulate the operation of

the value predictor and can measure the profiling

image for each instruction. Such profiling image

includes execution count, the prediction rate of the

instruction and the suitable predictor for the

instruction.

The output of the profile image is organized as a

table. Each entry is associated with one instruction

and consists of four fields: the instruction address, the

executing count, the prediction accuracy and suitable

predictor. Note that the table has been sorted by the

executing count and the instructions with the lower

prediction accuracy (e.g. <0.7) are filtered out. In the

final step, the compiler generates the function codes

that can initialize the allocation of our new hybrid

predictor with the output table. Figure 2 shows the

profiling phase process.

Figure 2. The process of the profiling phase

The run time phase is divided into two steps. The

first step makes initial allocation by using the

profiling output. We only do the static allocation for

the last-value predictor and stride predictor. Because

the FCM predictor needs to learn repeating sequences

to predict arbitrary repeating patterns. So, it is

unnecessary to allocate the FCM predictor statically.

The next step makes the dynamic value prediction at

run time.

Our new hybrid predictor includes three parts:

last-value predictor, stride predictor and FCM

predictor. In order to design the architecture of our

new predictor, we make the experiment of the hybrid

predictor with infinite size in each predictor.

The hybrid predictor of the experiment is

composed of one FCM predictor and one stride

predictor. The stride predictor is based on the

two-delta predictor. The two predictors make

predictions simultaneously for each instruction. If

one of the two predictions is correct, the correct

Train input

parameters / files

Compiler
Binary

Executable

Benchmark

Programs

Simulator

 Profile

 Image

New binary

executable with the

initialize function

Compiler

Step 1 Step 2 Step 3

黃樹林 整合靜態與動態方法之新數值預測結構

明志學報 第 35 卷第二期 6

prediction count will be increased by one. The

experiment results are shown in Fig. 3.

Figure 3.The Prediction Rate of Hybrid Predictor

with Infinite Size

From the simulation results, we know the Both

Correct has the highest rate of 53.7%, the prediction

rate of the Stride Unique and FCM Unique are 20.2%

and 6% respectively. Because the last-value predictor

is of the low cost and the FCM predictor is too

expensive. So, we prefer to use the last-value

predictor or stride predictor as the major component.

In order to achieve high performance, different types

of the correct prediction must be allocated in the

suitable predictor.

We use the profile image output to help the

allocation of the last-value predictor and stride

predictor. Firstly, the last-value predictor will be

allocated for the instructions with high prediction

accuracy. We use the static allocation method for the

last-value predictor. This means it could not be

replaced any time. Then the stride predictor is

allocated initially for the rest instructions. But the

stride predictor uses dynamic allocation and can be

replaced at run time.

The last-value predictor in our architecture is

simple and very accurate as shown in Figure 4. If it is

hit, the other predictors don’t need to make prediction.

Thus the three predictors are unnecessary to make

predictions simultaneously for each instruction. If it

is missed, the prediction is chosen from the other

predictors (stride and FCM predictors) the same as

the operation of general hybrid predictor.

Figure 4. The Architecture of New Value Predictor

Hybride Predictor with Infinte Size

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

C
om

pr
es

s9
5

go li

pe
rl

A
vg

.

No
Prediction
Incorrect

FCM
Unique
Stride
Unique
Both
Correct

黃樹林 整合靜態與動態方法之新數值預測結構

明志學報 第 35 卷第二期 7

4. Numerical Results

 We use the SPECint95 as the benchmarks for the

simulation. All simulations were run on Sun

Ultra-sparc processor with Solaris O.S. The

simulation tools we use are Shade and SpixTools

released by SUN. The simulation results of the

general hybrid predictor and our new predictor with

various entries (from 1024 to 4096) are shown in

Figure 5 and Table 1, respectively. The general

hybrid predictor includes one stride predictor and one

FCM predictor with the same entries. But in our new

predictor the last-value predictor and the FCM

predictor are of fixed size (512 entries and 256

entries) for all simulated architectures. Only the size

of the stride predictor can be changed in our new

predictor. We use Table 1 to compare the cost and the

prediction rate for the different architectures. The

H_n represents the general hybrid predictor with n

entries and the New_n represents our new predictor

with n entries stride predictor. As we discussed in the

previous paragraph, the performance of the new

predictor is better than the general hybrid predictor

and the hardware cost is reduced obviously.

Figure 5. Correct Prediction Rate of Our New Hybrid

Predictor

Table 1. The Comparison between Hybrid and Our New Predictors

5. Conclusions

From the simulations shown above, the

512-entry last-value predictor has a very high

prediction rate (>95%) for all the case. This will be a

good choice for the high confidence prediction at run

time. In this paper, we have proposed a new hybrid

predictor using an appropriate predictor for each

instruction.

References

[1] Lee, J.K.F., and A.J. Smith, “Branch Prediction

Strategies and Branch Target Buffer Design”, In

Proceeding of 8th Annual International

Symposium on Computer Architecture, May

1981, pp. 135-148.

[2] M. H. Lipasti and J. P. Shen, “Exceeding the data

flow limit via value prediction,” in Proceedings

of the 29th Annual ACM/IEEE International

Symposium and WorkShop on Microarchitecture,

Type H_1024 New_1024 H_2048 New_2048 H_4096 New_4096

Cost (Bits) 194K 140.75K 384K 225.75K 760K 393.75K

Correct Rate 0.6918 0.7127 0.7160 0.7264 0.7336 0.7356

Incorrect Rate 0.0637 0.0457 0.0642 0.0472 0.0641 0.0449

No Prediction 0.2445 0.2416 0.2198 0.2264 0.2023 0.2195

Prediction
Accuracy

0.9094 0.9397 0.9122 0.9390 0.9146 0.9425

Correct Prediction Rate

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
om

pr
es

s9
5

gc
c

go

ij
pe

g li

m
88

ks
im pe
rl

vo
rt

ex

A
vg

.

hybrid1024

hybrid2048

hybrid4096

new1024

new2048

new4096

黃樹林 整合靜態與動態方法之新數值預測結構

明志學報 第 35 卷第二期 8

pp.226-237, Dec. 1996.

[3] Feddy Gabbay, Avi Mendelson, “ Speculative

execution based on value prediction. EE

Department TR 1080, Technion – Israel Institute

of Technology, Nov. 1996.

[4] Yiannakis Sazeides, James E. Smith, “The

Predictability of Data Values,” in Proceedings of

the 30th Annual IEEE/ACM International

Symposium on Microarchitecture, pp.

248 –258,1997.

[5] Kai Wang and Manoj Franklin, ”Highly Accurate

Data Value Prediction using Hybrid Predictors,”

in Proceedings of the fourth International

Conference on High Performance Computing,

pp. 358 –363,1997.

[6] Yiannakis Sazeides and James E. Smith,

“Modeling Program Predictability,” in

Proceedings of the 25th Annual International

Symposium on Computer Architecture,

pp.73 –84,1998.

[7] Brad Calder, Glenn Reinman and Brad Calder,

“Selective Value Prediction,” in Proceedings of

the 26th annual international symposium on

Computer architecture, pp.64 – 74,1999.

[8] Feddy Gabbay and Avi Mendelson, “ Can

Program Profiling Support Value Prediction?”,

in Proceedings of the Thirtieth Annual

IEEE/ACM International Symposium on

Microarchitecture, pp.270 –280, 1997

