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Chien’s Search Algorithm with Recursive Structure for the Study of BCH
Hard-Decoding
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ABSTRACT

A modified Chien search[1] circuit architecture for binary Bose-Chaudhuri-Hocquenghem(BCH) codes decoding
is studied using the Horner’s rules to substitute the definition of error-location polynomial. Thus, we get a
regular, recursive circuit for this procedure. Our simulation results demonstrate that incorporating the recursive
Chien search (RCS) scheme into the BCH codes decoding process in bit error rate (BER) is no degradation, and
it makes the circuit saving-area about 1/error-correcting-bit(t) than conventional Chien search (CCS) scheme.
The proposed scheme can be easily implemented on VLSI circuit. Furthermore, this structure can be applied to
the nonbinary BCH codes decoding.
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Berlekamp[7,8], Massey[9,10], Chien[1],
Forney[11], and many others. The most efficient
decoding algorithm and error correction algorithm

1: INTRODUCTION

The original applications of BCH codes [2,3]
were restricted to binary codes of length 2™-1 for for binary BCH codes was Berlekamp-Massey
some integer m. These were extended later by
Gorenstein and Zieler (1961)[4] to the nonbinary
codes with symbols from Galois field GF(q). BCH

codes have found a wide range of applications

algorithm (BMA) and Chien’s searching algorithm.

In this paper we shall reorganize the error-location
polynomial to find the roots based on Chien search
algorithm and present a recursive Chien search
circuit scheme. This paper is structured as follows,

mainly in modern communication systems, ranging
from the electronic storage devices to the wireless
mobile, such as: Bluetooth [5], Advanced Mobile
Phone System (AMPS) [6], etc. The decoding
procedure is an important topic for BCH codes. The

we first give a brief review of the BCH codes
decoding by an example in the next section. The
subsequent section then describes the conventional

first decoding algorithm for binary BCH codes was Chien search (CCS) scheme and explains - the

devised by Peterson in 1960[3]. Since then,

Peterson’s algorithm has been refined by
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proposed the recursive Chien search (RCS) scheme.
Simulation results over AWGN channels and
comparisons are illustrated and discussed in Section
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4. Finally, conclusions are made in Section 5.

2: BCH DECODING

Now, we concentrate on the BCH decoding. Since
1960, the first decoding algorithm for binary BCH
codes was devised. Then, more and more research
for its decoding was explored. This decoding
scheme [12] is shown in Fig. 1.
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Fig. 1 The BCH codes decoding scheme.

Where S represents the syndrome corresponding to
receive polynomial r(x) , o(X) is a

error-location polynomial, e(x) is a error polynomial,
and V(X) is a decoded codeword. Finally, we

describe the decoding scheme [13] as following:

Stepl. Compute the syndrome S from the
received r(X),

S=(S.S,,....S,) (2-1)
where S =r(a') 1<i<2t , and t =
|_dmin _1J . . . .
T is the error-correcting capability, a is a

primitive element of GF(2™), and d_. s a

minimum distance of a code.

Step2. Determine the error-location polynomial
o(xX) from the syndrome components
S,,S,,..,S, . We usually compute o(X) by
following three algorithms: (1). Berlekamp-Massey
algorithm (BMA), (2). Euclidean algorithm(EA), or

(3). Peterson-Gorenstein-Zieler algorithm(PGZ).
o(\) I A+ LX)+ B,x)--- 1+ B,X)
=0, +oX +oX +- +g% v: (22

where £ =a’,1<I|<wv, v:error numbers
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Step3. Determine the error-location numbers /5‘1,
By, ... B, by finding the roots of o(X), and
correct errors in  r(X) . The algorithm of finding the
roots of o(X) is called Chien’s
algorithm. V(x) =r(x)+e(x), where + is a XOR

searching

operation in GF(2).

Next, we describe an instance to explain the BCH
codes decoding procedure. Considering the BCH(15,
5, 7) code has triple-error-correcting (t = 3)
capability over GF(2%. Its corresponding the
generator polynomial g(x) =1 + x + x* + x* + x° + X
+ x™°. Assume the message polynomial u(x) = x + x?
+ x*, and code polynomial v(x) = x + x* + x® + x* +
X8+ x™ + x + x™. if we received a polynomial r(x)
=1+x+xX+ X +x+x%+ 3+ xM + xM then
comparing the v(x) and r(x) found out three errors
on 1 - x°® and x* positions.

Stepl: Compute the syndrome S from the received
r(x).
S=(S,S,,....S;), where
S,=r(@)=1+a’+a” =«
S, = Sf =a?
S,=r(@’)=1+a’*+a’ =a’
S, = 822 =a*
S, =r(a’)=1+1+1=1

S, =S’ =a

Step2: Determine the error-location polynomial o(x),
we use the PGZ algorithm to calculate it. Assume
the error pattern polynomial e(x) have v errors and
occurs on  XE, xB..xP o e =
Xhaxh 4 xh ,and S; = r(a) = v(a) + e(d) =
e(a), we know the
Si=a+al+. +al
S2=(a?)*+(ak)’+..+(a’)?
Sa=(ah)’+(a’)’+..+(a)’ (2-3)
Sat = (a")* +(a”)*+..+(a’)*

Let B =a’, we can find
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S1= f+fy*. 4,
Se=(B) +(B)'+.+(B)’

S3= (ﬂ1)3+(ﬂ2)3+"'+(ﬂu)3 (2-4)
Su= (ﬂl)a'l'(ﬂz)zt"'---"'(ﬂu)zI
Define an Error Location Polynomial o(x)

o() U @+ Ax) A+ B,X)--- A+ S,X)

oy +oX+0,X ++0 X

Then, we can get

o,=1

0= B =BP+ b,

i=1
0, =Zﬂiﬂj =161ﬁ2 +ﬂ1ﬂ3 +"'+ﬂuflﬂu (2-5)

i<j

o,~11A=55.5

From the two simultaneous Equations (2-4) and
(2-5), Newton Identity can be obtained as follow:
S,+0,=0
S,+0,5,+20,=0
S;+0,S,+0,5 +30,=0

S,+o0,S, +..+0, S tvo,= 0
S,,top,+toy, +..+0,S 5 0

v+l

Syto, 105, ;4,105 &

i 0 i:even
Because that lo; = . and
o, i:odd
o2
S, i = S i
Newton Identity can be reduced as follow:
S,+0,=0

S;+0,S,+0,5+0,=0
S;+0,S,+0,5,+0,5,+0,5 +0,=0

Sy, +0,S, ,+0,5, ;+..+0,S,,=0

We applied the PGZ method to solve Newton
Identity.

51
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When the fewer error occurred, the answer can be
obtained easily.
One error occurred:

o, =S
Two errors occurred:
o, =9
3
S;+S;
o,=—"—
Sl
Three errors occurred:
o, =9
2
_ S1 S3 + 85

ik S +S,
0, =(S,+$;)+ S0,
Four errors occurred:
o,=S
CS(S +S,)+5,(S°+Sy)
2 5,(S°+S,) +S,(S2+S,)
o, =(5>+S,)+S,0,
o, = (5,78, +S.)+ (S +S,)0,
Sl
Finally, we can find there are three errors occurred
in received polynomial r(x). So, we use the formula

to obtain the error locations.
o, =a

adat+1
O, =—3——F =«
a +a
o, =@ +a’)+aa’ =a’
Thus, we get error-location polynomial o(x)
o(X)= Lrax +d ¥ +a »
Step3: Use Chien search algorithm to find root of

o(x). We find that
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o) =l+a*1l+a™1?+a**1*=0
o@®)=1+a*ad* +a™(*) +a**(2®)* =0
o@®)=1+a*a’ +a™(@°) +a**(a’)’ =0
roots of the s(x)are 1, @®=a ™, o’ =a°.
Then, the decoded codeword is
V(x) =e(x)+r(x)

=X+ X+ X+ X+ )+ x4+ x4 X

3: CHIEN SEARCH ALGORITHM

It’s a way to find the root of error-location
polynomial, if we get the error-location polynomial
from decoding algorithm i.e., PGZ, EA, or BMA.
Then we can use the Chien’s search algorithm to
find all roots of this polynomial, Equation (3-1)
shows the definition of error-location polynomial

()OI [JA+BX) =l+ox+0,x* ++ox’  (31)

=1

, and because all nonzero element B in GF(2™) can

2m-2

be expressed in 1,a,a2,-~,05 ,50 we will put

the elements 1,a,a2,---,a2m_2
(3-1), if o(al)=0, forj=0.--2" -2, then

o the root of o(x). Further, we find (') that

into the Equation

is error location, and we use it to correct error bits.
Fig. 2[13] shows the classical Chien search circuit. It
is implemented by Equation (3-1).

Output
» D >
> { >

Buffer

Fig. 2 The classic Chien search circuit.
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3.1: RECURSIVE SEARCH

ALGORITHM

CHIEN

In this paper, we proposed a modified method for
Chien search algorithm, it applied the Horner’s rules
to substitute the error-location polynomial. Then, we
can reorganize the original Chien search circuit to
form a recursive structure as following.

o(x)0 H(l+ a'x) =1+6,X+G,X> +--+ G X"
1=1

= (- (q X+ qo) X
(3-2).

+ @)X

Using this recursion form makes the circuit it can
save area about 1/t for the implementation of
hardware than the CCS circuit. By this way we can
also calculate the root of error-location polynomial
and more regularly. Now we use the Equation (3-2)
to realize a decoding algorithm:

Stepl, first we get ©,,---,0; from finding o(x)

decoding algorithm.

Step2, we multiple o, and X, where x belongs to a set
of {oco,ocl---oczm"2 }, then add o..;. Recursively,
until add 1 if results is equal to zero, then x is the

root of error-location polynomial. otherwise, it is not
a root.

Fig. 3 is the proposed recursive Chien search circuit.

In this Figure we only use one XOR gate and one
polynomial multiple in a kernel of the computing
process unit. Using this structure to solve the roots
of 6(x), we can save more area of VLSI circuit than

classical Chien search circuit.

v(x)

ﬁ e(x)

Buffer

Fig. 3 The recursive Chien search circuit.



4: SIMULATION RESULTS

In this section, we conduct a series of experiments to
evaluate the effectiveness of the recursive Chien
search algorithm we proposed for BCH codes
decoding. In this simulation, a data codeword of 15
bits is considered and 100,000 blocks are transmitted.
The BCH coding parameters (n, k, dmn) is equal to
(15, 5, 7), i.e., the code has triple error-correcting
capability. The overall code rate is 1/3. The coded
bits are modulated using binary phase shift keying
(BPSK) and white
double-sided power spectral density of No/2 is added

Gaussian noise with a
to the modulated signal. Decoding used the PGZ
algorithm to find out the error-location polynomial.
Error locations are determined by the proposed
recursive Chien’s search circuit scheme.

The results of the simulation are shown in Fig. 4.
Comparing the results CCS and RCS are no coding
gain different. It proved our proposed RCS scheme is
effective.

10 = e =
: Uncoded
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1= RCS
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Fig. 4 Comparison of BER performances for the
“Uncoded” case, the “CCS” case and the “RCS”
case.

5: CONCLUSION

In this paper, we proposed a recursive Chein
search circuit to decode the binary BCH codes. The
idea of our approach is the application of Horner’s

HES MEEm sk BERFUESIEEAR BCH BRI 211 5E

53

rules. It has been shown by simulations that the CCS
and RCS have the same performance in the coding
gain, i.e., they are the same BER (Bit Error Rate).
But, our proposed RCS circuit is more regular and
saving-area 1/t than the CCS circuit. Thus the RCS
circuit will be more benefit than CCS in the VLSI
implementations. Furthermore, this structure can be
applied to nonbinary BCH decoding.
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