
黃樹林 超純量微處理器中支援高指令發出率與完成率之多組庫重排序緩衝器

明志學報 第 38 卷第二期 51

超純量微處理器中支援高指令發出率與完成率

之多組庫重排序緩衝器

Multi-Bank Reorder Buffer to Support High Issuing and Retiring Rate for

Superscalar Microprocessors

黃樹林

Shu-Lin Hwang

摘要

超級純量微處理器大多支援預測式平行執行以提升系統效能，這代表指令能被亂序執行。因此需要一個

能重新排列指令為原始程式中順式的機制以保持正確的程式狀態。另一方面, 當指令被亂序執行

時也需能提供暫存器改名機制以解決資料相依問題(WAR 或 WAW)。一個重排序緩衝器通常在達成

這兩個需求中扮演重要的角色。本論文主要提出一個於超級純量微處理器中能達到高指令發出率與完成

率(最高為 8 個固定長度的 RISC 指令或稱為微運算碼)的重排序緩衝器的設計。並且為了簡化切換及讀/

寫埠的複雜度，全部的資料位置使用交錯方式被分成八個獨立的組庫來運作。

關鍵字:超級純量，重排序緩衝器，多組庫

ABSTRACT

Superscalar microprocessors mostly support for speculative parallel execution to enhance system

performance, this methodology means the instructions can be out-of-order executed. A mechanism is

required for rearranging the instruction in original program sequence to keep a correct state. Another

requirement, the register renaming mechanism is provided for resolving data dependence (WAR or

WAW) when the instructions are executed out-of-order. A Reorder Buffer plays the role for achieving

these two requirements. This paper proposes a design of high issuing and retiring rate (up to eight

fixed-length RISC instructions referred to as micro-ops) Reorder Buffer of a superscalar microprocessor. In

order to reduce the complexity of switching and read/write ports, the total entries are divided into eight

independent banks by an interleaved way.

Keyword: Superscalar, Reorder Buffer, multi-bank

1. Introduction

It is difficult to determine a state precisely in

a superscalar architecture since the processor or

system state is not modified in a sequential order

with respect to the other instructions. Thus when

an exception occurs, it is necessary to perform a

certain amount of work to obtain the correct

processor state that should exist at the time the

exception occurred. In order to achieve precise

exception, Reorder Buffer (ROB) is one of

hardware mechanisms can maintain the correct

processor state when the instructions are

speculative executed. Therefore, it can be used to

restore the correct state as the exception has been

resolved. The ROB is an instructions pool. It

accepts the micro-ops from decoder’s dispatcher in

program sequential order. Because the dispatcher

黃樹林 明志科技大學電子工程系副教授

黃樹林 超純量微處理器中支援高指令發出率與完成率之多組庫重排序緩衝器

明志學報 第 38 卷第二期 52

issues the micro-ops into the ROB in program

order, so the micro-ops have been kept in original

program order in ROB. After the micro-ops are

placed in the ROB, the reservation station (RS) can

copy multiple micro-ops from the ROB in any

order and dispatch them to the appropriate

execution units for execution. The criteria for

selecting a micro-op for execution is that the

appropriate execution unit and all necessary data

items required by the micro-op are available  the

micro-ops do not have to be executed in any

particular order. As each micro-op in the ROB has

been executed, it is marked as ready for retirement

and its results are retained in the micro-op’s

respective entry in the ROB (rather than in the

processor’s actual register set).

In order to achieve precise exception, the

ROB’s micro-ops must be retired to actual register

files in original program order. The retirement logic

constantly checks the status of the oldest micro-ops in

the ROB to determine whether they can be retired or

not. If they can be retired, the micro-ops executed

results are copied into the processor’s real register set

from the ROB entries and the respective ROB entry

is then deleted (by updating the ROB’s head pointer).

A diagram, as shown in Figure 1, Micro-ops

are decoded and dispatched to the ROB from the

Decoder/Dispatcher Unit in original program order.

In the meanwhile, Source operand identifiers are

sent to the ROB for searching the tag or value from

the Dispatcher, then the searching information

combining with the destination operand tag from

the ROB are dispatched to the reservation station

for preparing execution. The micro-ops do not

have to be executed in program order. But they can

be executed if and only if the function of which the

micro-op executed is available and all necessary

data items required by the execution are available.

Decoder/Dispatcher

Reorder Buffer

 (ROB)

Retirement Control /

Branch &Exception

Control

Register files

RS

Execution

Unit

Destination tags

Latch

Result Bus

Source operand idsMicro-ops

Source operand

value / tags Opcode

Figure 1. The Reorder Buffer Block Diagram

After execution, the results are written to the

corresponding entries in the ROB through the result

bus according to the destination tags. The Retirement

Control/Branch&Exeception Control unit checks the

oldest micro-ops in the ROB to determine whether

they can be retired or not. If does, the unit writes the

results to the register files. If doesn’t, exception or

branch misprediction might have occurred. This unit

must send flush signal to the ROB and other units for

flushing incorrect micro-ops.

In this paper, we will briefly introduce the

traditional Reorder Buffer architecture, and then

describe our multi-bank scheme for the superscalar.

2. Reorder Buffer Method

This method allows instructions to complete out

of order, but retains the results of each instruction in a

reorder buffer. The processor uses the reorder buffer

to reorder outoforder completion instructions

before they modify the processor state. The processor

updates the register file from this reorder buffer only

after it knows that all previously issued instructions

are free of exception conditions. This approach has an

advantage over the in-order completion method

because it allows multiple instructions to be executed

concurrently. Each entry of the result shift register

needs an extra field, called the Tag field, for

controlling the scheduling of instructions. An

黃樹林 超純量微處理器中支援高指令發出率與完成率之多組庫重排序緩衝器

明志學報 第 38 卷第二期 53

organization of the reorder buffer method is shown in

Figure 2.

Register

File

Reorder

Buffer

Result Shift

Register

R
esult B

us

Source data

to function unit

.

Comparators / Bypass

Network

Instruction Issue

control

Function Units

Instruction

Fetch / Decode

Figure 2. Reorder Buffer Method

Figure 3 presents the operation of the result

shift register for a sample program, using the

reorder buffer method. The reorder buffer takes the

form of a circular queue when the processor issues

an instruction, it places the current program

counter and a tag to the destination register in the

reorder buffer entry that the tail pointer points to.

Simultaneously, the tag value is placed into the

Tag field of the corresponding entry in the result

shift register, along with the execution unit field

indicating which functional unit the instruction

will use. After the processor then increments the

tail pointer, modulo the reorder buffer depth, it is

ready for the next instruction. In the reorder buffer,

the tail pointer points to the most recently issued

instruction and the head pointer points to the

earliest issued instruction, as shown in Figure 3.

Stage
Functional

Unit Source
Valid Tag

1 0

2 Integer ADD 1 4

3 0

4 0

5 Float-Point ADD 1 5

:

N 0

Direction

of

movement

Dest.

Reg.
Result Exceptions Valid

Program

Counter

R4 0 6

R0 0 7
head

tail

Tag

3
4
5
6...

Figure 3. The relations between the result shift register and the reorder buffer

As an instruction finishes execution (completed,

and leaves the result shift register), the reorder

buffer pointer from the result shift register guides

the instruction results and exception condition to the

correct reorder buffer entry. When this reorder buffer

entry becomes the head of the queue and contains

valid results, the destination register pointer guides

the results, which are now stored in the reorder

buffer, into the destination register. If the processor

detects no exceptions, it writes the results into the

destination register. If it detects an exception, it will

stop issue instruction and inhibits all further writings

into the registers. After the processor updates the

register file, it no longer needs the reorder buffer

entry, and it increments the pointer to the head of the

reorder buffer, discarding the entry. [1][5][9]

3. Multi-Bank Reorder Buffer Design

Our architecture of the reorder buffer is

introduced in this section which includes the

specific and function. We explain how it achieves

high issuing and retiring rate performance.

The Intel Pentium Pro microprocessor has a

reorder buffer design with an average three

micro-ops of issuing and retiring rate. In order to

黃樹林 超純量微處理器中支援高指令發出率與完成率之多組庫重排序緩衝器

明志學報 第 38 卷第二期 54

achieve higher performance, we propose a new

reorder buffer architecture with higher issued and

retired micro-ops per cycle comparing to Pentium

Pro microprocessor. However, because reorder

buffer is the control center of a superscalar

processor which implies the circuit design

complexity is very high.

In order to achieve compatibility to x86

instructions, the microprocessor’s each general

purpose register is divided into three parts which

are eXtension (X) part, High byte (H) part, and

Low bye (L) part. So, the data dependence

checking is not only checks full register but also

checks partial register that instructions retrieve.

Therefore, the complexity is increased when

dealing with data dependence. Because there is

only one flag, that is not a problem to find latest

micro-op’s flag when we do source operands

searching or write the latest updated flags into

Eflag register when a micro-op is retiring.

The dispatcher has two choices to log

micro-ops into ROB, one is logging into ROB’s

entry that top pointer points to, the other is

logging into the location by tag matching. The

numbers of micro-ops can be logged-in or retired

also have two choices, fixed number or various

numbers. The latter is more flexible but also more

complex to design.

The misprediction handling can be done in

various time: the time as soon as the

misprediction occurs or the time when the

misprediction micro-op is going to be retired.

Exception handling needs to consider the

information sent exception handler, including EIP

(32 bit x86 instruction pointer) for recover

instruction execution when the exception has been

processed.

Our reorder buffer has the following main

features:

 Keep the lookahead state (register file

maintains the in-order state)

 Divide ROB into eight independent banks

in interleaved round-robin way, they can be

considered as a big ROB conceptually

 ROB can accept up to eight log-in

micro-ops and retire up to eight micro-ops

in one cycle

 Retrieve the source operands and flags

modified by previous instructions for up to

eight micro-ops simultaneously

 Commit the result values and flags for four

micro-ops simultaneously

 Rename destination register and flags

 Retire (update register files) all the

micro-ops following the program sequence

correctly

 Handle flushing caused by the

misprediction and the exception, and call

the Exception Handler to recover the

exception.

As mentioned before, the ROB is a First-In

First-Out (FIFO) circular queue. In order to

maintain program state correctly, the ROB

controls completed micro-ops to update register

files in original program order. As exception

occurs, processor could recover to correct state

after the exception processed. It is also used to

reserve micro-ops’ information that have been

completed but not retired temperately. The ROB’s

function controls when the result from the

functional units will update register files.

The decoder decodes micro-ops in program

order, and then dispatches micro-ops to the ROB

banks individually and sequentially from

dispatcher&scheduler. How to keep micro-ops’

original order among the ROB banks is a key to

decide if the micro-ops could be retired in

黃樹林 超純量微處理器中支援高指令發出率與完成率之多組庫重排序緩衝器

明志學報 第 38 卷第二期 55

program order later.

The Reorder Buffer (ROB) consists of the

following five major components: eight discrete

Banks, Issue Pointer & Tag Dispatch Circuit, Source

Operands Searching Circuit, Result Write Arbiter

Circuit, and Retirement Circuit/Branch & Exception

Control Circuit as shown in shadow parts of Fig 4.

The main functions of the ROB include three

aspects. The first one is to rename the destination

register by the physical ROB addresses where the

corresponding micro-ops are stored. Renaming can

move the following two false dependencies: write

after read (WAR), and write after write (WAW), and

can speed up the process of the true dependence 

read after write (RAW).

Decoder

Pre-switching

Dispatcher Queue

Post-switching

Bank0 Bank1 Bank7

tail

head

Retirement Control / Branch&Exception Control

Circuit

Reservation Station

Register

Files

Register Files Resulting Bus

entry

log-in

tag

id

O
perand

8 Micro-Ops

Complete

4 Results

Retire

8 POPs

.

.

tail

head

Issue Pointer & Tag

dispatch Circuit

Source Operands

Searching Circuit

Result Write

Arbiter Circuit

RabFirstbu

Exception Handler

Exception

Information

R0~R7

&RabFlush_In

Result_V & Result_In

DTag0~DTag7 V0~V7

ROB entry Information

Retire Address

Seaching Result

Source ids for searching

Figure 4. Multi-Bank Reorder Buffer Block Diagram

The second function is to correctly retire all

the micro-ops following the program sequence.

To retire up to eight micro-ops in one cycle, the

Retirement Control needs to check the following

three special cases: destinations conflict or

overlapping, the store micro-op and misprediction

and exception. Those three special cases will

make the ROB unable to retire the eight

micro-ops in one cycle even if the eight micro-ops

can be retired at least. In following sections we

will describe how to take care of the retirement.

The third function is to handle the flushing

caused by the misprediction and the exceptions,

and to start the Exception Handler to recover the

exceptions. In the meanwhile, the ROB must send

the EIP to the Decoder to restart decoding the

micro-ops.

 Basically, the ROB is the only mechanism in

processor which can know the order of all the

micro-ops, so it has to be responsible for controlling

the outoforder execution flow to guarantee that

the result can be retired correctly in whatever

condition. In following sections, we introduce the

detail of individual blocks that compose of the ROB.

4. ROB Banks

This block is constructed of a FIFO circular

queue structure which stores the micro-ops

temporary information from the

Decoder/Dispatcher or the Result Bus (after

executing the micro-ops, then the operated result

is output to the result bus). Our ROB has 64

entries totally. A tail pointer is used to point the

entry that will be allocated from the dispatcher in

黃樹林 超純量微處理器中支援高指令發出率與完成率之多組庫重排序緩衝器

明志學報 第 38 卷第二期 56

the next cycle (negative edge). Additionally, the

ROB also has a head pointer that points to the

entry to be retired (recognizes whether it could be

retired or not by retirement logic) in the current

cycle (negative edge). Owing to these two

pointers, the processor can point out the valid

entries region and judge the full or empty

condition for the ROB.

According to our design, the ROB Bank

block is comprised of eight independent banks.

All the eight banks are of the same structure. They

can be considered as a big ROB conceptually.

Physically they are divided into eight independent

pieces in order to reduce the complexity of

switching and read/write ports. Each bank has

eight entries, a header and a tailer to point out the

valid entries region. To match the logical concept

of a big ROB, the micro-ops in the dispatcher

queue are interleaved and logged into the banks in

roundrobin way.

In each cycle, the Dispatcher can issue up to

eight micro-ops into the individual ROB bank

entry pointed by its own tail pointer. Because the

issuing quantum of micro-ops from dispatcher is

various in each cycle. In this case, the dispatcher

needs to know the starting ROB bank number for

micro-ops logged-in in the next cycle. This

assures that the processor can retire micro-ops in

original program order. However, the quantum of

the micro-ops could be retired is also various. The

eight ROB banks’ entries pointed by tail pointers

individually are the micro-ops to be retired by

retirement logic circuit. So the processor needs to

maintain two pointers that record the information

about the start point for issuing (Ip pointer) and

retiring (Rp pointer) in the next cycle. After

issuing and retiring micro-op, the tail and head

pointers need to be incremented individually.

The main features of this block are shown as

the following:

 Log-in micro-ops into ROB bank every cycle

 Write result to ROB bank according to tag

address

 Output operand information to Source

Operands Searching Circuit block to find

source operand tag or value

 Output retiring micro-ops’ (the entry pointed

by head pointer) information to the

Retirement Control/Branch&Exception

Control Circuit block which decides whether

it can be retired or not

 Flush ROB entries when RabFlush_ signal

arrives and issues ROB bank full and empty

signals

In each ROB bank (Figure 5.), the DpRabreq

bus is the input data line recording the micro-ops’

information from the dispatcher for log in. The

RabSrc buses send out the information about

source operand for source operand searching

circuit to resolve data dependency. One RabSrc

bus exhibits one entry information. The Result_In

bus accepts the completed data from the result

bus for changing the corresponding entry (tag

match) execution status (ex. misprediction,

exception).

The Result_V signal exhibits if the result

from the result bus is valid. The RabRetire bus

sends out the information of the entry pointed by

head pointer, the retirement logic circuit will use

this information for judging whether it could be

retired or not. The R is a signal from the

retirement logic circuit to decide whether the

entry pointed by head pointer can be retired. The

RabEmpty_ and RabFull_ indicate the ROB

bank’s condition is empty or full. The

RabFlushIn_ signal decides whether we need to

flush the ROB bank. The E_Buf signal stores the

exception information caused by delay exception

(EN=16, Floating Point Error). Finally, the DTag

黃樹林 超純量微處理器中支援高指令發出率與完成率之多組庫重排序緩衝器

明志學報 第 38 卷第二期 57

is an assigned tag data for the current issued

micro-ops entry in this cycle. This information is

the destination operand’s tag that the dispatcher

needs.

Reset_

Clk

RabFlushIn_

RabEmpty_

RabFull_

Result_V

Result_In

ROB_bank

(160 bits)

R

DTag

1

1

1

1

1

1

1

3

F B p t r S g V A S D _ i d F W L P o i n t e r O f f s e t N C S W

016 29 71011 18 121920212226 23

F B p t r

_ O u t

N C _

O u t

S g _

O u t
A D F M

S _

O u t

D _ i d

_ O u t
R e s u l t

F W _

O u t
E f l a g

S W _

O u t
S w o r d E E N F E c o d e C

L _

O u t

P o i n t e r

_ O u t

O f f s e t

_ O u t

4 07 58925 102631 273248 334960 5061143 62150 144151152153154159 156

RabRetire

DpRabreq

SC 0-7

SD _id0-7

SV alue0-7

SFW 0-7

SE flag0-7

SSW 0-7

SSw ord0-7

15

 0

16

27

17

28

110

 29

117

111

118

...

..

.

...

..

.

RabSrc0

RabSrc7

161

27

119

119

V alue_In

Eflag_In

T ag_In

M _In

E_In

EInfo_In

Sword_In

15

 0

37

16

38

39

42

40

53

43

 135

 54

136

RabSrc2

RabSrc3

RabSrc4

RabSrc5

RabSrc6

RabSrc1

head
3

E_Buf22

155

Figure 5. The individual ROB bank I/O interface

5. Numerical Results:

We design a verilog test pattern file for the

simulation to verify the correctness of the ROB

function. Decoder starts logging multiple

micro-ops into the ROB before the falling edge of

clock 3. The RabFirstbu and RabTag signals are

updated before the rising edge of the clock after

the micro-ops logged-in. Before the rising edge of

the clock 5, the first set result comes to the ROB

for updating. The contents of the ROB entry stores

(address from 0~8) is shown in the figure 6. About

retirement aspect, the R0~R7 signals show that

there are four micro-ops retired in clock 6, and two

micro-ops retired in clock 7. In the meanwhile, an

exception occurs in the micro-op of the bank 6 is

detected in clock 7. So it activates the Rabflush_

signal simultaneously. After RabFlush_ active, the

RabFirstbu and Rp reset that indicates the start

point for logging-in and retiring micro-ops is bank

0.

6. Conclusions

The modern superscalar microprocessor

supports for speculative execution to achieve high

performance. Out-of-order execution needs a

mechanism to maintain the instruction’s original

program order. With this mechanism, the processor

can recover to the correct state after exception occurs.

Another objective is to provide result data temporary

storage to achieve register renaming [7]. This

mechanism can be supported by the following

approaches, Ex. History Buffer, Reorder Buffer and

Future File. Among these, Reorder Buffer is the most

popular method. That’s the reason why we choose

the reorder buffer method to develop our design. The

popular microprocessor likes: Intel Pentium Pro and

AMD K5 also use the reorder buffer mechanism.

According to the databook of the Intel Pentium

Pro, it could log-in and retire three micro-ops per

cycle. In AMD K5 the micro-ops logging-in and

retiring rate is four. However, our reorder buffer

design can log-in and retire up to eight micro-ops per

cycle. In order to reduce the complexity of switching

and read/write ports, a 64 entries reorder buffer is

黃樹林 超純量微處理器中支援高指令發出率與完成率之多組庫重排序緩衝器

明志學報 第 38 卷第二期 58

divided into eight independent banks by an

interleaved way. Increasing on hardware cost to

achieve higher performance is a trade off to design

the reorder buffer. This new idea for Dividing banks,

Source Operand Searching and Retirement data

dependence to resolve are our major contribution.

References

[1] J.L. Hennessy, D.A. Patterson, “Computer

Architecture: A Quantitative Approach”, Morgan

Kaufmann Publisher, San Francisco, Calif., 1996

[2] James E. Smith, and Andrew R. Pleszkun,

“Implementation of Precise Interrupts in Pipelined

Processors,” Proc. 12th Ann. Int’I Symp. Computer

Architecture, Los Alamitos, Calif., 1985, pp. 36-44.

[3] W.M. Hwu and Y.N. Patt, “Checkpoint Repair for

Out-of-Order Execution Machines,” Proc. 14th Ann.

Int’I Symp. Computer Architecture, 1987, pp. 18-26.

[4] Gurindar S. Sohi and Sriram Vajapeyam, “Instruction

Issue Logic for High-Performance, Interruptable

Pipelined Processors,” Computer Sciences

Department, University of Wisconsin-Madison 1987

[5] W.M. Johnson, “Superscalar Microprocessor Design,”

Prentice-Hall, Englewood Cliffs, NJ, 1991.

[6] H. Dwyer and H.C. Torng, “Out-of-Order Superscalar

Processor with Speculative Execution and Fast,

Precise Interrupts,” In proceedings of the 25th Annual

International Symposium on Microarchitecture, 1992.,

pp. 272-281

[7] M. Moudgill, K. Pingali, and S. Vassiliadis, “Register

Renaming and Dynamic Speculation: an Alternative

Approach,” Department of Computer Science,

Cornell University. August 1993.

[8] C.-J. Wang and F. Emmett, “Implementing Precise

Interruptions in Pipelined RISC Processors,” IEEE

Micro, Vol. 13, No. 4, Aug. 1993, pp. 36-43.

[9] Mayan Moudgill and Stamatis Vassiliadis, “Precise

Interrupts,” IBM T.J. Watson Research Center and

Delft University of Technology. IEEE Micro, Feb.

1996.

[10] Tom Shanley, “Pentium Pro Processor System

Architecture,” MindShare, Inc. 1996.

[11] Mayan Moudgill and Stamatis Vassiliadis, “Precise

Interrupts,” IBM T.J. Watson Research Center and

Delft University of Technology. IEEE Micro, Feb.

1996.

黃樹林 超純量微處理器中支援高指令發出率與完成率之多組庫重排序緩衝器

明志學報 第 38 卷第二期 59

Figure 6. The ROB Verilog Simulation Result

1 3 42 765 1098

1 3 42 765 1098

黃樹林 超純量微處理器中支援高指令發出率與完成率之多組庫重排序緩衝器

明志學報 第 38 卷第二期 60

