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摘要 

超級純量微處理器大多支援預測式平行執行以提升系統效能，這代表指令能被亂序執行。因此需要一個

能重新排列指令為原始程式中順式的機制以保持正確的程式狀態。另一方面, 當指令被亂序執行

時也需能提供暫存器改名機制以解決資料相依問題(WAR 或 WAW)。一個重排序緩衝器通常在達成

這兩個需求中扮演重要的角色。本論文主要提出一個於超級純量微處理器中能達到高指令發出率與完成

率(最高為 8 個固定長度的 RISC 指令或稱為微運算碼)的重排序緩衝器的設計。並且為了簡化切換及讀/

寫埠的複雜度，全部的資料位置使用交錯方式被分成八個獨立的組庫來運作。 

關鍵字:超級純量，重排序緩衝器，多組庫 

ABSTRACT 

Superscalar microprocessors mostly support for speculative parallel execution to enhance system 

performance, this methodology means the instructions can be out-of-order executed. A mechanism is 

required for rearranging the instruction in original program sequence to keep a correct state. Another 

requirement, the register renaming mechanism is provided for resolving data dependence (WAR or 

WAW) when the instructions are executed out-of-order. A Reorder Buffer plays the role for achieving 

these two requirements. This paper proposes a design of high issuing and retiring rate (up to eight 

fixed-length RISC instructions referred to as micro-ops) Reorder Buffer of a superscalar microprocessor. In 

order to reduce the complexity of switching and read/write ports, the total entries are divided into eight 

independent banks by an interleaved way.  

Keyword: Superscalar, Reorder Buffer, multi-bank  

1. Introduction 

It is difficult to determine a state precisely in 

a superscalar architecture since the processor or 

system state is not modified in a sequential order 

with respect to the other instructions. Thus when 

an exception occurs, it is necessary to perform a 

certain amount of work to obtain the correct 

processor state that should exist at the time the 

exception occurred. In order to achieve precise 

exception, Reorder Buffer (ROB) is one of 

hardware mechanisms can maintain the correct 

processor state when the instructions are 

speculative executed. Therefore, it can be used to 

restore the correct state as the exception has been 

resolved. The ROB is an instructions pool. It 

accepts the micro-ops from decoder’s dispatcher in 

program sequential order. Because the dispatcher 
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issues the micro-ops into the ROB in program 

order, so the micro-ops have been kept in original 

program order in ROB. After the micro-ops are 

placed in the ROB, the reservation station (RS) can 

copy multiple micro-ops from the ROB in any 

order and dispatch them to the appropriate 

execution units for execution. The criteria for 

selecting a micro-op for execution is that the 

appropriate execution unit and all necessary data 

items required by the micro-op are available  the 

micro-ops do not have to be executed in any 

particular order. As each micro-op in the ROB has 

been executed, it is marked as ready for retirement 

and its results are retained in the micro-op’s 

respective entry in the ROB (rather than in the 

processor’s actual register set). 

In order to achieve precise exception, the 

ROB’s micro-ops must be retired to actual register 

files in original program order. The retirement logic 

constantly checks the status of the oldest micro-ops in 

the ROB to determine whether they can be retired or 

not. If they can be retired, the micro-ops executed 

results are copied into the processor’s real register set 

from the ROB entries and the respective ROB entry 

is then deleted (by updating the ROB’s head pointer). 

A diagram, as shown in Figure 1, Micro-ops 

are decoded and dispatched to the ROB from the 

Decoder/Dispatcher Unit in original program order. 

In the meanwhile, Source operand identifiers are 

sent to the ROB for searching the tag or value from 

the Dispatcher, then the searching information 

combining with the destination operand tag from 

the ROB are dispatched to the reservation station 

for preparing execution. The micro-ops do not 

have to be executed in program order. But they can 

be executed if and only if the function of which the 

micro-op executed is available and all necessary 

data items required by the execution are available. 

Decoder/Dispatcher

Reorder Buffer

 (ROB)

Retirement Control /

Branch &Exception

Control

Register files

RS

Execution 

Unit

Destination tags

Latch

Result Bus

Source operand idsMicro-ops

Source operand 

value / tags Opcode

Figure 1. The Reorder Buffer Block Diagram 

After execution, the results are written to the 

corresponding entries in the ROB through the result 

bus according to the destination tags. The Retirement 

Control/Branch&Exeception Control unit checks the 

oldest micro-ops in the ROB to determine whether 

they can be retired or not. If does, the unit writes the 

results to the register files. If doesn’t, exception or 

branch misprediction might have occurred. This unit 

must send flush signal to the ROB and other units for 

flushing incorrect micro-ops. 

In this paper, we will briefly introduce the 

traditional Reorder Buffer architecture, and then 

describe our multi-bank scheme for the superscalar. 

2. Reorder Buffer Method 

This method allows instructions to complete out 

of order, but retains the results of each instruction in a 

reorder buffer. The processor uses the reorder buffer 

to reorder outoforder completion instructions 

before they modify the processor state. The processor 

updates the register file from this reorder buffer only 

after it knows that all previously issued instructions 

are free of exception conditions. This approach has an 

advantage over the in-order completion method 

because it allows multiple instructions to be executed 

concurrently. Each entry of the result shift register 

needs an extra field, called the Tag field, for 

controlling the scheduling of instructions. An 
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organization of the reorder buffer method is shown in 

Figure 2. 
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Figure 2. Reorder Buffer Method 

Figure 3 presents the operation of the result 

shift register for a sample program, using the 

reorder buffer method. The reorder buffer takes the 

form of a circular queue when the processor issues 

an instruction, it places the current program 

counter and a tag to the destination register in the 

reorder buffer entry that the tail pointer points to. 

Simultaneously, the tag value is placed into the 

Tag field of the corresponding entry in the result 

shift register, along with the execution unit field 

indicating which functional unit the instruction 

will use. After the processor then increments the 

tail pointer, modulo the reorder buffer depth, it is 

ready for the next instruction. In the reorder buffer, 

the tail pointer points to the most recently issued 

instruction and the head pointer points to the 

earliest issued instruction, as shown in Figure 3.  
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Figure 3. The relations between the result shift register and the reorder buffer 

 

As an instruction finishes execution (completed, 

and leaves the result shift register), the reorder 

buffer pointer from the result shift register guides 

the instruction results and exception condition to the 

correct reorder buffer entry. When this reorder buffer 

entry becomes the head of the queue and contains 

valid results, the destination register pointer guides 

the results, which are now stored in the reorder 

buffer, into the destination register. If the processor 

detects no exceptions, it writes the results into the 

destination register. If it detects an exception, it will 

stop issue instruction and inhibits all further writings 

into the registers. After the processor updates the 

register file, it no longer needs the reorder buffer 

entry, and it increments the pointer to the head of the 

reorder buffer, discarding the entry. [1][5][9] 

3. Multi-Bank Reorder Buffer Design 

Our architecture of the reorder buffer is 

introduced in this section which includes the 

specific and function. We explain how it achieves 

high issuing and retiring rate performance. 

The Intel Pentium Pro microprocessor has a 

reorder buffer design with an average three 

micro-ops of issuing and retiring rate. In order to 
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achieve higher performance, we propose a new 

reorder buffer architecture with higher issued and 

retired micro-ops per cycle comparing to Pentium 

Pro microprocessor. However, because reorder 

buffer is the control center of a superscalar 

processor which implies the circuit design 

complexity is very high. 

In order to achieve compatibility to x86 

instructions, the microprocessor’s each general 

purpose register is divided into three parts which 

are eXtension (X) part, High byte (H) part, and 

Low bye (L) part. So, the data dependence 

checking is not only checks full register but also 

checks partial register that instructions retrieve. 

Therefore, the complexity is increased when 

dealing with data dependence. Because there is 

only one flag, that is not a problem to find latest 

micro-op’s flag when we do source operands 

searching or write the latest updated flags into 

Eflag register when a micro-op is retiring. 

The dispatcher has two choices to log 

micro-ops into ROB, one is logging into ROB’s 

entry that top pointer points to, the other is 

logging into the location by tag matching. The 

numbers of micro-ops can be logged-in or retired 

also have two choices, fixed number or various 

numbers. The latter is more flexible but also more 

complex to design. 

The misprediction handling can be done in 

various time: the time as soon as the 

misprediction occurs or the time when the 

misprediction micro-op is going to be retired. 

Exception handling needs to consider the 

information sent exception handler, including EIP 

(32 bit x86 instruction pointer) for recover 

instruction execution when the exception has been 

processed. 

Our reorder buffer has the following main 

features: 

 Keep the lookahead state (register file 

maintains the in-order state) 

 Divide ROB into eight independent banks 

in interleaved round-robin way, they can be 

considered as a big ROB conceptually  

 ROB can accept up to eight log-in 

micro-ops and retire up to eight micro-ops 

in one cycle 

 Retrieve the source operands and flags 

modified by previous instructions for up to 

eight micro-ops simultaneously 

 Commit the result values and flags for four 

micro-ops simultaneously 

 Rename destination register and flags 

 Retire (update register files) all the 

micro-ops following the program sequence 

correctly 

 Handle flushing caused by the 

misprediction and the exception, and call 

the Exception Handler to recover the 

exception. 

As mentioned before, the ROB is a First-In 

First-Out (FIFO) circular queue. In order to 

maintain program state correctly, the ROB 

controls completed micro-ops to update register 

files in original program order. As exception 

occurs, processor could recover to correct state 

after the exception processed. It is also used to 

reserve micro-ops’ information that have been 

completed but not retired temperately. The ROB’s 

function controls when the result from the 

functional units will update register files. 

The decoder decodes micro-ops in program 

order, and then dispatches micro-ops to the ROB 

banks individually and sequentially from 

dispatcher&scheduler. How to keep micro-ops’ 

original order among the ROB banks is a key to 

decide if the micro-ops could be retired in 
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program order later. 

The Reorder Buffer (ROB) consists of the 

following five major components: eight discrete 

Banks, Issue Pointer & Tag Dispatch Circuit, Source 

Operands Searching Circuit, Result Write Arbiter 

Circuit, and Retirement Circuit/Branch & Exception 

Control Circuit as shown in shadow parts of Fig 4. 

The main functions of the ROB include three 

aspects. The first one is to rename the destination 

register by the physical ROB addresses where the 

corresponding micro-ops are stored. Renaming can 

move the following two false dependencies: write 

after read (WAR), and write after write (WAW), and 

can speed up the process of the true dependence  

read after write (RAW). 
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Figure 4. Multi-Bank Reorder Buffer Block Diagram 

 

The second function is to correctly retire all 

the micro-ops following the program sequence. 

To retire up to eight micro-ops in one cycle, the 

Retirement Control needs to check the following 

three special cases: destinations conflict or 

overlapping, the store micro-op and misprediction 

and exception. Those three special cases will 

make the ROB unable to retire the eight 

micro-ops in one cycle even if the eight micro-ops 

can be retired at least. In following sections we 

will describe how to take care of the retirement. 

The third function is to handle the flushing 

caused by the misprediction and the exceptions, 

and to start the Exception Handler to recover the 

exceptions. In the meanwhile, the ROB must send 

the EIP to the Decoder to restart decoding the 

micro-ops. 

 Basically, the ROB is the only mechanism in 

processor which can know the order of all the 

micro-ops, so it has to be responsible for controlling 

the outoforder execution flow to guarantee that 

the result can be retired correctly in whatever 

condition. In following sections, we introduce the 

detail of individual blocks that compose of the ROB. 

4. ROB Banks 

This block is constructed of a FIFO circular 

queue structure which stores the micro-ops 

temporary information from the 

Decoder/Dispatcher or the Result Bus (after 

executing the micro-ops, then the operated result 

is output to the result bus). Our ROB has 64 

entries totally. A tail pointer is used to point the 

entry that will be allocated from the dispatcher in 
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the next cycle (negative edge). Additionally, the 

ROB also has a head pointer that points to the 

entry to be retired (recognizes whether it could be 

retired or not by retirement logic) in the current 

cycle (negative edge). Owing to these two 

pointers, the processor can point out the valid 

entries region and judge the full or empty 

condition for the ROB.  

According to our design, the ROB Bank 

block is comprised of eight independent banks. 

All the eight banks are of the same structure. They 

can be considered as a big ROB conceptually. 

Physically they are divided into eight independent 

pieces in order to reduce the complexity of 

switching and read/write ports. Each bank has 

eight entries, a header and a tailer to point out the 

valid entries region. To match the logical concept 

of a big ROB, the micro-ops in the dispatcher 

queue are interleaved and logged into the banks in 

roundrobin way. 

In each cycle, the Dispatcher can issue up to 

eight micro-ops into the individual ROB bank 

entry pointed by its own tail pointer. Because the 

issuing quantum of micro-ops from dispatcher is 

various in each cycle. In this case, the dispatcher 

needs to know the starting ROB bank number for 

micro-ops logged-in in the next cycle. This 

assures that the processor can retire micro-ops in 

original program order. However, the quantum of 

the micro-ops could be retired is also various. The 

eight ROB banks’ entries pointed by tail pointers 

individually are the micro-ops to be retired by 

retirement logic circuit. So the processor needs to 

maintain two pointers that record the information 

about the start point for issuing (Ip pointer) and 

retiring (Rp pointer) in the next cycle. After 

issuing and retiring micro-op, the tail and head 

pointers need to be incremented individually. 

The main features of this block are shown as 

the following: 

 Log-in micro-ops into ROB bank every cycle 

 Write result to ROB bank according to tag 

address 

 Output operand information to Source 

Operands Searching Circuit block to find 

source operand tag or value 

 Output retiring micro-ops’ (the entry pointed 

by head pointer) information to the 

Retirement Control/Branch&Exception 

Control Circuit block which decides whether 

it can be retired or not 

 Flush ROB entries when RabFlush_ signal 

arrives and issues ROB bank full and empty 

signals 

In each ROB bank (Figure 5.), the DpRabreq 

bus is the input data line recording the micro-ops’ 

information from the dispatcher for log in. The 

RabSrc buses send out the information about 

source operand for source operand searching 

circuit to resolve data dependency. One RabSrc 

bus exhibits one entry information. The Result_In 

bus accepts the completed data from the result 

bus for changing the corresponding entry (tag 

match) execution status (ex. misprediction, 

exception). 

The Result_V signal exhibits if the result 

from the result bus is valid. The RabRetire bus 

sends out the information of the entry pointed by 

head pointer, the retirement logic circuit will use 

this information for judging whether it could be 

retired or not. The R is a signal from the 

retirement logic circuit to decide whether the 

entry pointed by head pointer can be retired. The 

RabEmpty_ and RabFull_ indicate the ROB 

bank’s condition is empty or full. The 

RabFlushIn_ signal decides whether we need to 

flush the ROB bank. The E_Buf signal stores the 

exception information caused by delay exception 

(EN=16, Floating Point Error). Finally, the DTag 
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is an assigned tag data for the current issued 

micro-ops entry in this cycle. This information is 

the destination operand’s tag that the dispatcher 

needs.

Reset_

Clk

RabFlushIn_

RabEmpty_

RabFull_

Result_V

Result_In

ROB_bank

(160 bits)

R

DTag

1

1

1

1

1

1

1

3

F B p t r S g V A S D _ i d F W L P o i n t e r O f f s e t N C S W

016          29           71011 18     121920212226      23

F B p t r

_ O u t

N C _

O u t

S g _

O u t
A D F M

S _

O u t

D _ i d

_ O u t
R e s u l t

F W _

O u t
E f l a g

S W _

O u t
S w o r d E E N F E c o d e C

L _

O u t

P o i n t e r

_ O u t

O f f s e t

_ O u t

4      07     58925  102631   273248  334960   5061143  62150 144151152153154159  156

RabRetire

DpRabreq

SC 0-7

SD _id0-7

SV alue0-7

SFW 0-7

SE flag0-7

SSW 0-7

SSw ord0-7

15

 0

16

27

17

28

110

  29

117

111

118

...

..

.

...

..

.

RabSrc0

RabSrc7

161

27

119

119

V alue_In

Eflag_In

T ag_In

M _In

E_In

EInfo_In

Sword_In

15

 0

37

16

38

39

42

40

53

43

 135

  54

136

RabSrc2

RabSrc3

RabSrc4

RabSrc5

RabSrc6

RabSrc1

head
3

E_Buf22

155

 
Figure 5. The individual ROB bank I/O interface 

5. Numerical Results:  

We design a verilog test pattern file for the 

simulation to verify the correctness of the ROB 

function. Decoder starts logging multiple 

micro-ops into the ROB before the falling edge of 

clock 3. The RabFirstbu and RabTag signals are 

updated before the rising edge of the clock after 

the micro-ops logged-in. Before the rising edge of 

the clock 5, the first set result comes to the ROB 

for updating. The contents of the ROB entry stores 

(address from 0~8) is shown in the figure 6. About 

retirement aspect, the R0~R7 signals show that 

there are four micro-ops retired in clock 6, and two 

micro-ops retired in clock 7. In the meanwhile, an 

exception occurs in the micro-op of the bank 6 is 

detected in clock 7. So it activates the Rabflush_ 

signal simultaneously. After RabFlush_ active, the 

RabFirstbu and Rp reset that indicates the start 

point for logging-in and retiring micro-ops is bank 

0. 

6. Conclusions 

The modern superscalar microprocessor 

supports for speculative execution to achieve high 

performance. Out-of-order execution needs a 

mechanism to maintain the instruction’s original 

program order. With this mechanism, the processor 

can recover to the correct state after exception occurs. 

Another objective is to provide result data temporary 

storage to achieve register renaming [7]. This 

mechanism can be supported by the following 

approaches, Ex. History Buffer, Reorder Buffer and 

Future File. Among these, Reorder Buffer is the most 

popular method. That’s the reason why we choose 

the reorder buffer method to develop our design. The 

popular microprocessor likes: Intel Pentium Pro and 

AMD K5 also use the reorder buffer mechanism. 

According to the databook of the Intel Pentium 

Pro, it could log-in and retire three micro-ops per 

cycle. In AMD K5 the micro-ops logging-in and 

retiring rate is four. However, our reorder buffer 

design can log-in and retire up to eight micro-ops per 

cycle. In order to reduce the complexity of switching 

and read/write ports, a 64 entries reorder buffer is 
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divided into eight independent banks by an 

interleaved way. Increasing on hardware cost to 

achieve higher performance is a trade off to design 

the reorder buffer. This new idea for Dividing banks, 

Source Operand Searching and Retirement data 

dependence to resolve are our major contribution. 
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Figure 6. The ROB Verilog Simulation Result 
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