Ffh AR R E S RS e S RS PR B B s

BB M E A T SR S IE S R HIR ST R
ZZ R E s

Multi-Bank Reorder Buffer to Support High Issuing and Retiring Rate for
Superscalar Microprocessors

UL

Shu-Lin Hwang

RS

FEAR AT B IE B RS SR T F P TR T RIS 808E - BRI CREMRLIF BT » INIERREE—1{H
REEHTHRYITE < Ry R AaE 0P AR I AORFF IEVERVAZZUIRAE 55— 7, EfSHElradT
RF 3 BE P (I B il DA B AR AR TR (WAR 20 WAW) - — {8 B HE 4% 7 25 4 1) (E2E K
EREFRK P EE R A o AR EERRH —E B AE a5 T REEEEE S 3 R BSE N
(= 8 {EEERER RISC {555 RVGERIS)AYE PR Eastyaat - I H R TRk R/
FOIRAVIRAEE - S EHYERMLE (IR T A oy (R 1L HIAH EE A A -

BREEFEElE - B REE - 2AE
ABSTRACT

Superscalar microprocessors mostly support for speculative parallel execution to enhance system
performance, this methodology means the instructions can be out-of-order executed. A mechanism is
required for rearranging the instruction in original program sequence to keep a correct state. Another
requirement, the register renaming mechanism is provided for resolving data dependence (WAR or
WAW) when the instructions are executed out-of-order. A Reorder Buffer plays the role for achieving
these two requirements. This paper proposes a design of high issuing and retiring rate (up to eight
fixed-length RISC instructions referred to as micro-ops) Reorder Buffer of a superscalar microprocessor. In
order to reduce the complexity of switching and read/write ports, the total entries are divided into eight
independent banks by an interleaved way.

Keyword: Superscalar, Reorder Buffer, multi-bank

exception occurred. In order to achieve precise
exception, Reorder Buffer (ROB) is one of

1. Introduction

It is difficult to determine a state precisely in hardware mechanisms can maintain the correct
a superscalar architecture since the processor or ~ Pprocessor state when the instructions are
system state is not modified in a sequential order speculative executed. Therefore, it can be used to
with respect to the other instructions. Thus when restore the correct state as the exception has been
an exception occurs, it is necessary to perform a resolved. The ROB is an instructions pool. It
certain amount of work to obtain the correct acceptsthe micro-ops from decoder’s dispatcher in
processor state that should exist at the time the ~ program sequential order. Because the dispatcher

wRR HEREOREE T TR AEHIY

51 IR 5 38 BEE Y

whbh SRR S P RS e S R L RS PR B Pk TS

issues the micro-ops into the ROB in program
order, so the micro-ops have been kept in original
program order in ROB. After the micro-ops are
placed in the ROB, the reservation station (RS) can
copy multiple micro-ops from the ROB in any
order and dispatch them to the appropriate
execution units for execution. The criteria for
selecting a micro-op for execution is that the
appropriate execution unit and all necessary data
items required by the micro-op are available — the
micro-ops do not have to be executed in any
particular order. As each micro-op in the ROB has
been executed, it is marked as ready for retirement
and its results are retained in the micro-op’s
respective entry in the ROB (rather than in the

processor’s actual register set).

In order to achieve precise exception, the
ROB’s micro-ops must be retired to actual register
files in original program order. The retirement logic
constantly checks the status of the oldest micro-ops in
the ROB to determine whether they can be retired or
not. If they can be retired, the micro-ops executed
results are copied into the processor’s real register set
from the ROB entries and the respective ROB entry
is then deleted (by updating the ROB’s head pointer).

A diagram, as shown in Figure 1, Micro-ops
are decoded and dispatched to the ROB from the

Decoder/Dispatcher Unit in original program order.

In the meanwhile, Source operand identifiers are
sent to the ROB for searching the tag or value from
the Dispatcher, then the searching information
combining with the destination operand tag from
the ROB are dispatched to the reservation station
for preparing execution. The micro-ops do not
have to be executed in program order. But they can
be executed if and only if the function of which the
micro-op executed is available and all necessary
data items required by the execution are available.

BHE S 55 38 BH I

Decoder/Dispatcher
Source operand
Destination tags Micro-ops Source operand ids ~ value / tags Opcode
|
T Lateh
Reorder Buffer
(ROB) RS
l Execution
Unit
Retirement Control /
Branch &Exception
Control
Vﬂ Result Bus

Register files

Figure 1. The Reorder Buffer Block Diagram

After execution, the results are written to the
corresponding entries in the ROB through the result
bus according to the destination tags. The Retirement
Control/Branch&Exeception Control unit checks the
oldest micro-ops in the ROB to determine whether
they can be retired or not. If does, the unit writes the
results to the register files. If doesn’t, exception or
branch misprediction might have occurred. This unit
must send flush signal to the ROB and other units for
flushing incorrect micro-ops.

In this paper, we will briefly introduce the
traditional Reorder Buffer architecture, and then
describe our multi-bank scheme for the superscalar.

2. Reorder Buffer Method

This method allows instructions to complete out
of order, but retains the results of each instruction in a
reorder buffer. The processor uses the reorder buffer
to reorder out—of-order completion instructions
before they modify the processor state. The processor
updates the register file from this reorder buffer only
after it knows that all previously issued instructions
are free of exception conditions. This approach has an
advantage over the in-order completion method
because it allows multiple instructions to be executed
concurrently. Each entry of the result shift register
needs an extra field, called the Tag field, for
controlling the scheduling of instructions. An

Ffh AR R E S RS e S RS PR B B s

organization of the reorder buffer method is shown in
Figure 2.

Instruction
Fetch / Decode

Instruction Issue

i : l

Reorder control Result Shift
Buffer Register
-]
13 Register
2 .
= File
5]
|
w

Comparators / Bypass
Network

Source data
to function unit

g oY

A.

Function Units

Figure 2. Reorder Buffer Method

Figure 3 presents the operation of the result
shift register for a sample program, using the

Functional .
A
Stage Unit Source Valid | Tag
1 0
Direction g Integer ADD é 4
of
movement 4 i 0
5 | FHoat-Poit ADD| 1 | 5
N 0

reorder buffer method. The reorder buffer takes the
form of a circular queue when the processor issues
an it places the current program
counter and a tag to the destination register in the

instruction,

reorder buffer entry that the tail pointer points to.
Simultaneously, the tag value is placed into the
Tag field of the corresponding entry in the result
shift register, along with the execution unit field
indicating which functional unit the instruction
will use. After the processor then increments the
tail pointer, modulo the reorder buffer depth, it is
ready for the next instruction. In the reorder buffer,
the tail pointer points to the most recently issued
instruction and the head pointer points to the
earliest issued instruction, as shown in Figure 3.

Ta Dest. ; . Program
g Reg. Result | Exceptions | Valid | "
3
head —» 4 | R4 : ;
_ 5 | RO 0 !
tail = ¢

Figure 3. The relations between the result shift register and the reorder buffer

As an instruction finishes execution (completed,
and leaves the result shift register), the reorder
buffer pointer from the result shift register guides
the instruction results and exception condition to the
correct reorder buffer entry. When this reorder buffer
entry becomes the head of the queue and contains
valid results, the destination register pointer guides
the results, which are now stored in the reorder
buffer, into the destination register. If the processor
detects no exceptions, it writes the results into the
destination register. If it detects an exception, it will
stop issue instruction and inhibits all further writings
into the registers. After the processor updates the

53

register file, it no longer needs the reorder buffer
entry, and it increments the pointer to the head of the
reorder buffer, discarding the entry. [1][5][9]

3. Multi-Bank Reorder Buffer Design

Our architecture of the reorder buffer is

introduced in this section which includes the
specific and function. We explain how it achieves

high issuing and retiring rate performance.

The Intel Pentium Pro microprocessor has a
reorder buffer design with an average three
micro-ops of issuing and retiring rate. In order to

IR 5 38 BEE Y

wfibk AR RURE S TP S e S B R BE R

achieve higher performance, we propose a new
reorder buffer architecture with higher issued and
retired micro-ops per cycle comparing to Pentium
Pro microprocessor. However, because reorder
buffer is the control center of a superscalar
processor which

complexity is very high.

implies the circuit design

In order to achieve compatibility to x86
instructions, the microprocessor’s each general
purpose register is divided into three parts which
are eXtension (X) part, High byte (H) part, and
Low bye (L) part. So, the data dependence
checking is not only checks full register but also
checks partial register that instructions retrieve.
Therefore, the complexity is increased when
dealing with data dependence. Because there is
only one flag, that is not a problem to find latest
micro-op’s flag when we do source operands
searching or write the latest updated flags into
Eflag register when a micro-op is retiring.

The dispatcher has two choices to log
micro-ops into ROB, one is logging into ROB’s
entry that top pointer points to, the other is
logging into the location by tag matching. The
numbers of micro-ops can be logged-in or retired
also have two choices, fixed number or various
numbers. The latter is more flexible but also more
complex to design.

The misprediction handling can be done in
the the
misprediction occurs or the time when the

various time: time as soon as
misprediction micro-op is going to be retired.
Exception handling the
information sent exception handler, including EIP
(32 bit x86
instruction execution when the exception has been

processed.

needs to consider

instruction pointer) for recover

Our reorder buffer has the following main
features:
+ Keep the lookahead state (register file

BHE S 55 38 BH I

54

2 4 I B PR Ak (EEE

maintains the in-order state)

+ Divide ROB into eight independent banks
in interleaved round-robin way, they can be
considered as a big ROB conceptually

+ ROB can accept up to eight log-in
micro-ops and retire up to eight micro-ops

in one cycle

+ Retrieve the source operands and flags
modified by previous instructions for up to
eight micro-ops simultaneously

+ Commit the result values and flags for four
micro-ops simultaneously

+ Rename destination register and flags

+ Retire (update register files) all the
micro-ops following the program sequence

correctly

+« Handle flushing caused by the
misprediction and the exception, and call
the Exception Handler to recover the

exception.

As mentioned before, the ROB is a First-In
In order to

the ROB
controls completed micro-ops to update register
files in original program order. As exception

First-Out (FIFO) circular queue.
maintain program state correctly,

occurs, processor could recover to correct state
after the exception processed. It is also used to
reserve micro-ops’ information that have been
completed but not retired temperately. The ROB’s
function controls when the result from the
functional units will update register files.

The decoder decodes micro-ops in program
order, and then dispatches micro-ops to the ROB
banks individually and sequentially from
dispatcher&scheduler. How to keep micro-ops’
original order among the ROB banks is a key to

decide if the micro-ops could be retired in

Ffh AR R E S RS e S RS PR B B s

program order later.

The Reorder Buffer (ROB) consists of the
following five major components: eight discrete
Banks, Issue Pointer & Tag Dispatch Circuit, Source
Operands Searching Circuit, Result Write Arbiter
Circuit, and Retirement Circuit/Branch & Exception
Control Circuit as shown in shadow parts of Fig 4.

The main functions of the ROB include three

aspects. The first one is to rename the destination
register by the physical ROB addresses where the
corresponding micro-ops are stored. Renaming can
move the following two false dependencies: write
after read (WAR), and write after write (WAW), and
can speed up the process of the true dependence —
read after write (RAW).

‘ Decoder ‘ —> Dispatcher Queue ‘
- XK
8 Micro-Ops RabFirstbu
v
entry | Pre-switching |— tag Post-switching
log-in I
| — . . B, O id
- v
DTag0-DTag7 VOo-V7 | | | | | | | |
R v Issue Pointer & Tag
tail tail dispatch Circuit R v
BankO Bankl [_ = = = = = Bank7 egister
reEg] sG] Source ids for searching Files
T ZN A 3 A +
ROB entry Information

I ! I—» Source Operands —g

Result_V & Result_In Searching Circuit]

v v = =]

~Z o

Retirement Control / Branch&Exception Control S~ | ~
wl_ Circuit Result Write ~ Seachinglizesult
Arbiter Circuit -
RO~-R7 Retire Address
&RabFlush_In
v
Exception Retire Complete Reservation Station
| Information ¢ B8POPs 4 Results

Exception Handler Register Files

Resulting Bus

Figure 4. Multi-Bank Reorder Buffer Block Diagram

The second function is to correctly retire all
the micro-ops following the program sequence.
To retire up to eight micro-ops in one cycle, the
Retirement Control needs to check the following
three special cases: destinations conflict or
overlapping, the store micro-op and misprediction
and exception. Those three special cases will
make the ROB wunable to retire the eight
micro-ops in one cycle even if the eight micro-ops
can be retired at least. In following sections we
will describe how to take care of the retirement.

The third function is to handle the flushing
caused by the misprediction and the exceptions,
and to start the Exception Handler to recover the
exceptions. In the meanwhile, the ROB must send
the EIP to the Decoder to restart decoding the
micro-ops.

Basically, the ROB is the only mechanism in
processor which can know the order of all the
micro-ops, so it has to be responsible for controlling
the out—of—order execution flow to guarantee that
the result can be retired correctly in whatever
condition. In following sections, we introduce the
detail of individual blocks that compose of the ROB.

4. ROB Banks

This block is constructed of a FIFO circular
queue structure which stores the micro-ops
temporary information from the
Decoder/Dispatcher or the Result Bus (after
executing the micro-ops, then the operated result
is output to the result bus). Our ROB has 64
entries totally. A tail pointer is used to point the

entry that will be allocated from the dispatcher in

IR 5 38 BEE Y

wfibk AR RURE S TP S e S B R BE R

the next cycle (negative edge). Additionally, the
ROB also has a head pointer that points to the
entry to be retired (recognizes whether it could be
retired or not by retirement logic) in the current
cycle (negative edge). Owing to these two
pointers, the processor can point out the valid
entries region and judge the full

condition for the ROB.

or empty

According to our design, the ROB Bank
block is comprised of eight independent banks.
All the eight banks are of the same structure. They
can be considered as a big ROB conceptually.
Physically they are divided into eight independent
pieces in order to reduce the complexity of
switching and read/write ports. Each bank has
eight entries, a header and a tailer to point out the
valid entries region. To match the logical concept
of a big ROB, the micro-ops in the dispatcher
queue are interleaved and logged into the banks in
round—robin way.

In each cycle, the Dispatcher can issue up to
eight micro-ops into the individual ROB bank
entry pointed by its own tail pointer. Because the
issuing quantum of micro-ops from dispatcher is
various in each cycle. In this case, the dispatcher
needs to know the starting ROB bank number for
micro-ops logged-in in the next cycle. This
assures that the processor can retire micro-ops in
original program order. However, the quantum of
the micro-ops could be retired is also various. The
eight ROB banks’ entries pointed by tail pointers
individually are the micro-ops to be retired by
retirement logic circuit. So the processor needs to
maintain two pointers that record the information
about the start point for issuing (Ip pointer) and
retiring (Rp pointer) in the next cycle. After
issuing and retiring micro-op, the tail and head
pointers need to be incremented individually.

The main features of this block are shown as
the following:

BHE S 55 38 BH I

56

2 4 I B PR Ak (EEE

» Log-in micro-ops into ROB bank every cycle

» Write result to ROB bank according to tag
address

» Output operand information to Source
Operands Searching Circuit block to find
source operand tag or value

» Output retiring micro-ops’ (the entry pointed
by head pointer) information to the
Retirement Control/Branch&Exception
Control Circuit block which decides whether
it can be retired or not

» Flush ROB entries when RabFlush_ signal
arrives and issues ROB bank full and empty
signals

In each ROB bank (Figure 5.), the DpRabreq
bus is the input data line recording the micro-ops’
information from the dispatcher for log in. The
RabSrc buses send out the information about
source operand for source operand searching
circuit to resolve data dependency. One RabSrc
bus exhibits one entry information. The Result_In
bus accepts the completed data from the result
bus for changing the corresponding entry (tag
status

match) execution

exception).

(ex. misprediction,

The Result_V signal exhibits if the result
from the result bus is valid. The RabRetire bus
sends out the information of the entry pointed by
head pointer, the retirement logic circuit will use
this information for judging whether it could be
retired or not. The R is a signal from the
retirement logic circuit to decide whether the
entry pointed by head pointer can be retired. The
RabEmpty_ and RabFull_ indicate the ROB
bank’s full. The
RabFlushin_ signal decides whether we need to
flush the ROB bank. The E_Buf signal stores the
exception information caused by delay exception
(EN=16, Floating Point Error). Finally, the DTag

condition is empty or

Ffh AR R E S RS e S RS PR B B s

is an assigned tag data for the current issued

the destination operand’s tag that the dispatcher

micro-ops entry in this cycle. This information is needs.
DpRabreq
\]\27 J/
N
|FBpU ‘Sg |V|A|5|D_id |FW |L|Poinlev ‘O“SEI |NC |SW |
26 23 22 21 20 19 18 12 11 10 9 7 6 2 1 0
1 | Resel el 119) RabSrc0
15| ck 135 118 —
15| RabFlushin_ | vatue_in | o 17 SCO-7 RabSrcl
l—>| R ," 53 11 | SP-ido-7
Efl |
1 «——| RabEmpty_ ," - 43 110 . . RabSrc2
] —— RabFull 1 m SValue0-7 [} [
- ! 2 RabSrc3
Se—o DTag h Tag_In RO B ban k R " "
3 K 40 — 28| SFwo-7 . . RabSrca
<« head ' - apsSrc
h 27
' M e (160 bltS) SEflago-7 - - RabSIc5
1 —>| Result_Vv B E_In 38 }Z . . apsre
1 SSWO0-7
N\ .- 37 15 RabSrc6
Result_In >‘ ------- R Elnfo_In b o | sswordo7
136 7 N prs —
N - 119) RabSrc7
2 E_Buf \ | Sword_In o ~e. P—
159 15‘6 l|55 15‘4 15‘3 15‘2 1|51 15‘0 144 1|43 62 ‘6 ‘60 50 4948 33 3|2 31 27 ‘26 2510 9 ‘8 ‘7 5 ‘4 0 l

RabRetire

Figure 5. The individual ROB bank 1/O interface

5. Numerical Results:

We design a verilog test pattern file for the
simulation to verify the correctness of the ROB
logging multiple
micro-ops into the ROB before the falling edge of
clock 3. The RabFirstbu and RabTag signals are
updated before the rising edge of the clock after
the micro-ops logged-in. Before the rising edge of
the clock 5, the first set result comes to the ROB
for updating. The contents of the ROB entry stores
(address from 0~8) is shown in the figure 6. About
retirement aspect, the RO~R7 signals show that
there are four micro-ops retired in clock 6, and two

function. Decoder starts

micro-ops retired in clock 7. In the meanwhile, an
exception occurs in the micro-op of the bank 6 is
detected in clock 7. So it activates the Rabflush_
signal simultaneously. After RabFlush_ active, the
RabFirstbu and Rp reset that indicates the start
point for logging-in and retiring micro-ops is bank
0.

6. Conclusions

57

The modern

supports for speculative execution to achieve high

superscalar microprocessor

performance. Out-of-order execution needs a
mechanism to maintain the instruction’s original
program order. With this mechanism, the processor
can recover to the correct state after exception occurs.
Another objective is to provide result data temporary
storage to achieve register renaming [7]. This
mechanism can be supported by the following
approaches, Ex. History Buffer, Reorder Buffer and
Future File. Among these, Reorder Buffer is the most
popular method. That’s the reason why we choose
the reorder buffer method to develop our design. The
popular microprocessor likes: Intel Pentium Pro and

AMD K5 also use the reorder buffer mechanism.

According to the databook of the Intel Pentium
Pro, it could log-in and retire three micro-ops per
cycle. In AMD K5 the micro-ops logging-in and
retiring rate is four. However, our reorder buffer
design can log-in and retire up to eight micro-ops per
cycle. In order to reduce the complexity of switching
and read/write ports, a 64 entries reorder buffer is

IR 5 38 BEE Y

divided

into eight independent banks by an

interleaved way. Increasing on hardware cost to

achieve higher performance is a trade off to design
the reorder buffer. This new idea for Dividing banks,

Source Operand Searching and Retirement data

dependence to resolve are our major contribution.

References

(1]

[2]

(3]

(4]

(5]

(6]

[7]

(8]

HERS

c

J.L. Hennessy, D.A. Patterson, “Computer
Architecture: A Quantitative Approach”, Morgan

Kaufmann Publisher, San Francisco, Calif., 1996

James E. Smith, and Andrew R. Pleszkun,
“Implementation of Precise Interrupts in Pipelined
Processors,” Proc. 12th Ann. Int’I Symp. Computer

Architecture, Los Alamitos, Calif., 1985, pp. 36-44.

WM. Hwu and Y.N. Patt, “Checkpoint Repair for
Out-of-Order Execution Machines,” Proc. 14th Ann.
Int’I Symp. Computer Architecture, 1987, pp. 18-26.

Gurindar S. Sohi and Sriram Vajapeyam, “Instruction
Issue Logic for High-Performance, Interruptable

Pipelined Processors,” Computer Sciences

Department, University of Wisconsin-Madison 1987

W.M. Johnson, “Superscalar Microprocessor Design,”

Prentice-Hall, Englewood Cliffs, NJ, 1991.

H. Dwyer and H.C. Torng, “Out-of-Order Superscalar
Processor with Speculative Execution and Fast,
Precise Interrupts,” In proceedings of the 25th Annual
International Symposium on Microarchitecture, 1992.,
pp. 272-281

M. Moudgill, K. Pingali, and S. Vassiliadis, “Register
Renaming and Dynamic Speculation: an Alternative
Approach,” Science,

Department of Computer

Cornell University. August 1993.

C.-J. Wang and F. Emmett, “Implementing Precise
Interruptions in Pipelined RISC Processors,” IEEE
Micro, Vol. 13, No. 4, Aug. 1993, pp. 36-43.

%38 EHE

58

0]

[10]

[11]

sk BALE RS R S S B RIS R S 4 B P 4 RS

Mayan Moudgill and Stamatis Vassiliadis, “Precise
Interrupts,” IBM T.J. Watson Research Center and
Delft University of Technology. IEEE Micro, Feb.
1996.

Tom Shanley, “Pentium Pro Processor

Architecture,” MindShare, Inc. 1996.

System

Mayan Moudgill and Stamatis Vassiliadis, “Precise
Interrupts,” IBM T.J. Watson Research Center and
Delft University of Technology. IEEE Micro, Feb.
1996.

iR RS RT S PR SR © B RIISE R B E R S

. WAVES =] 3
Cursor 420 & a0

Marker o]

|

[
N

3 8 9 10

Q201000

Q202000

0204000

0205000

i
I
[o203000
|
i
|

QO0E000

Q007000

4 6
| |
| |
| |
f i
| |
| |
| |

5 7
f f i	

QO00020 Q200020

|
|
|
|

Q000000

L JL JL L
e e b e

E

N—
= Il oco 1oo 111 [r1o Jooo 1ol

-000000 [oootoofoootsa] | Yoooooo fooo1o1

_000001 [ooototfootooo] | Tooooor fooo11o
abTag2= -000010 [ooottofootoo1] | Yooooto fooo111
abTazZ= N 000011 [oooti1footoro]l | Toooo1l footooo]
abTagd= -000100 [ooccoofooto11] | Yoootoo footoot]
abTagh= -000101 [ooocotfoottoo]l | Toooio1 footo1o]
abTagh= -000110 [oocotofoottor] | Yooot1o footo1t]
abTaz7= N 000111 [oocottfoootzol | Toooi11 foot100]
opocor- x x x x
OB1C0]= - | | | i
OB2C0]= - | | | i

E_Buf= - QOOCOD0Q00000000000000 Q0000000000000 C000000

Figure 6. The ROB Verilog Simulation Result

59 Gy 38 HE

sk BALE RS R S S B RIS R S 4 B P 4 RS

S %38 B 60

